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Abstract

Many of the challenges in the estimation of dynamic heterogeneous treatment effects
can be resolved with local projection (LP) estimators of the sort used in applied
macroeconometrics. This approach provides a convenient alternative to the more
complicated solutions proposed in the recent literature on Difference-in-Differences
(DiD). The key is to combine LPs with a flexible ‘clean control” condition to define
appropriate sets of treated and control units. Our proposed LP-DiD estimator is clear,
simple, easy and fast to compute, and it is transparent and flexible in its handling
of treated and control units. Moreover, it is quite general, including in its ability to
control for pre-treatment values of the outcome and of other time-varying covariates.
The LP-DiD estimator does not suffer from the negative weighting problem, and indeed
can be implemented with any weighting scheme the investigator desires. Simulations
demonstrate the good performance of the LP-DiD estimator in common settings. Two
recent empirical applications illustrate how LP-DiD addresses the bias of conventional
tixed effects estimators, leading to potentially different results.
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1 Introduction

Difference-in-differences (DiD) has become a widely used method to estimate treatment
effects with observational data. In canonical form, with two periods and two groups (of
which one is treated), and under suitable assumptions (e.g., no anticipation and parallel
trends), the DiD estimator properly identifies the average treatment effect on the treated.

Yet, as the scale and scope of DiD applications have widened over time and expanded
into multi-period settings, its underpinnings have been stretched and doubts about the
generality of its underlying assumptions have proliferated, as highlighted in many notable
recent studies. The central matter of concern has been the appropriate implementation
of DiD in an expanded set of situations where the timing of treatment adoptions can
differ across groups (i.e., are staggered) and treatment effects can differ across groups
(i.e., are heterogeneous) and occur gradually over time (i.e., are dynamic) (Callaway and
Sant’Anna, 2020; de Chaisemartin and D’Haultfoeuille, 2020; Sun and Abraham, 2020;
Goodman-Bacon, 2021; Borusyak, Jaravel, and Spiess, 2021; Wooldridge, 2021). What was
once a seemingly simple tool of general application increasingly appears to need bespoke
adjustments to suit each specific situation.

In this paper we approach this problem from a rather different angle, drawing out
an important link to a broader, flexible, encompassing family of alternative statistical
techniques close at hand. We bring to the fore an essential congruity between the concerns
of applied microeconomists facing the challenge of estimating dynamic, heterogeneous,
staggered treatment effects, and the concerns of applied macroeconomists who have long
faced the task of estimating dynamic impulse-responses in time-series or panel data.
Once understood this way, the scope for fertile interaction between these two strands of
empirical work might seem obvious, despite its failure to happen quite yet. To prompt
such a conversation, in this paper we re-frame the expanded set of DiD settings from
the perspective of estimation via local projection, or LP, where the latter is the statistical
technique introduced in a time-series context in Jorda (2005). Indeed, by its very design,
and as used in applied macroeconomics, the local projection approach was set up to
estimate average treatment responses that are staggered, heterogeneous, and dynamic.
Yet this capability has remained somewhat under-appreciated. By further developing
these LP techniques from macroeconometrics in conjunction with the potential outcomes
approach of microeconometrics to derive results for a wide range of DiD settings, we
seek to develop a more general toolkit for implementing the DiD method.

Our proposed LP-DiD approach employs local projections to estimate dynamic effects

alongside a flexible ‘clean control” condition in the spirit of Cengiz, Dube, Lindner,



and Zipperer (2019) to avoid the bias that can plague fixed-effects estimators when
treatment adoption is staggered (Borusyak, Jaravel, and Spiess, 2021; de Chaisemartin
and D’Haultfceuille, 2020; Goodman-Bacon, 2021; Callaway and Sant’Anna, 2020; Sun and
Abraham, 2020). Intuitively, the bias of fixed-effects estimators arises because previously
treated units, which might still be experiencing lagged time-varying and heterogeneous
treatment effects, are implicitly used as controls for newly treated units. The clean control
condition of our LP-DiD estimator avoids this bias by restricting the estimation sample so
that ‘unclean’ observations, whose outcome dynamics are still potentially influenced by a
previous change in treatment status, are not part of the control group.

Under the usual DiD assumptions, the LP-DiD estimator identifies a convex weighted
average of potentially heterogeneous cohort-specific treatment effects. We characterize
explicitly the weights assigned to each cohort-specific effect and show that they are
always positive and depend on treatment variance and subsample size. As we will
explain, however, it is easy to implement a different weighting scheme with our LP-DiD
estimator — including an equally-weighted average effect or any other desired scheme.

A skeptical reaction we can imagine hearing at this point is: why do we need yet
another expanded DiD technique? Indeed, several alternative DiD estimators have recently
been proposed to address the different settings that can arise in empirical applications
without incurring in the ‘negative weights’ bias of two-way fixed-effects regression.”

However, rather like a Swiss Army knife, the LP-DiD approach offers a single, univer-
sal multi-tool with advantages over the array of methods for estimation, inference, and
robustness currently employed in practice. The regression-based formulation of LP-DiD
allows simple coefficient tests to estimate models for cases with heterogeneous or homo-
geneous effects, dynamic or non-dynamic responses, and staggered or non-staggered
treatments, as well as to perform the standard validation check for pre-trends. Other
advantages of LP-DiD are the simplicity of implementation, the ability to control for
pre-treatment values of the outcome and other covariates, and the flexibility in how one
defines the sets of treated and control units, in addition to the ability to handle arbitrary
weighting schemes. Because the LP-DiD estimator is not specific to a particular setting,
but can be applied in a variety of situations, it provides an encompassing framework, and
the clean control condition employed by LP-DiD defines the appropriate set of treated
and control observations in a way that is transparent and therefore easy to understand,

communicate, and evaluate.

See, for example, Sun and Abraham (2020); Callaway and Sant’Anna (2020); Borusyak, Jaravel, and
Spiess (2021); de Chaisemartin and D'Haultfceuille (2020); de Chaisemartin, D’"Haultfceuille, Pasquier, and
Vazquez-Bare (2022); Gardner (2021); Wooldridge (2021).



In a baseline version without covariates and with binary absorbing treatment, and
in which only not-yet-treated observations are used as controls, it will become clear
that the LP-DiD estimate is identical to the estimate from a stacked regression approach
as implemented in Cengiz, Dube, Lindner, and Zipperer (2019), while the re-weighted
LP-DiD regression that recovers an equally-weighted ATT is numerically equivalent to
the estimator proposed by Callaway and Sant’Anna (2020). Moreover, we will show that
yet another version of LP-DiD, reweighted and with an alternative pre-treatment base
period, is very close to the Borusyak, Jaravel, and Spiess (2021) imputation estimator.
However, the LP-DiD implementation is simpler and computationally faster, and can
be more easily generalized to include control variables and deal with non-absorbing
treatment or continuous treatment.

Evidence from two Monte Carlo simulations suggests that the LP-DiD estimator
performs well in staggered difference-in-differences settings, also in comparison with
other estimators that have recently been proposed. Our simulations consider a binary
staggered treatment with dynamic and heterogeneous effects. In the first simulation
treatment timing is exogenous. Under this scenario, LP-DiD performs similarly to the
Sun and Abraham (2020), Callaway and Sant’Anna (2020) and Borusyak, Jaravel, and
Spiess (2021) estimators, while being computationally simpler and faster. In our second
simulation, the probability of entering treatment depends on lagged outcome dynamics.
In this second scenario, the ability of LP-DiD to match on pre-treatment outcomes allows
it to outperform other estimators. The purpose of these simulations is not mainly that of
performing a horse race between LP-DiD and other estimators, but to show that LP-DiD
performs well in plausible scenarios and that there is a class of settings—those in which
matching on pre-treatment outcome dynamics or other pre-determined covariates is
appropriate and important—in which LP-DiD could become the ‘go-to” approach.

Our two empirical applications employ LP-DiD to estimate the impact of banking
deregulation on the labor share (replicating and extending Leblebicioglu and Weinberger
2020) and the effect of democratization on economic growth (replicating and extending
Acemoglu, Naidu, Restrepo, and Robinson 2019). These are two examples of important
empirical settings where conventional estimates are potentially subject to bias because
of previously treated units being effectively used as controls, and where matching on
pre-treatment outcomes and other covariates is likely to be important. These applications
demonstrate the value of the LP-DiD approach in providing unbiased estimates both
when the parallel trends assumption holds unconditionally, and when it holds only
conditional on pre-treatment outcome dynamics.

The rest of this paper is organized as follows. In sections 2 and 3 we draw a connection



between DiD methods and the LP estimator, and then present our proposed LP-DiD
specification. In Section 4 we use simulations to assess the performance of our LP-DiD
approach, with comparisons to other methods in the recent literature. In Section 5 we

apply the LP-DiD estimator in two empirical applications. Section 6 concludes.

2 DiD local projection implementation

In this section we clarify the connection between the difference-in-differences (DiD) and
local projection (LP) methods. The main aim is to show how LPs can be used to implement
DiD in several different settings and with high flexibility. The presentation gradually
increases the complexity of the scenarios introduced to more clearly establish the links
between the issues raised in the literature and how LPs help sort them out.

While we start from simpler settings for the sake of clarity (Sections 2.2 to 2.4), the
core of this section is the discussion of the case of binary staggered treatment with
dynamic and heterogeneous treatment effects (Section 2.5). In the staggered setting, the
conventional two-way fixed-effects (TWFE) implementation of DiD, both in the static
and event-study version, can suffer from ‘negative weights’ bias as uncovered by recent
important studies (de Chaisemartin and D'Haultfceuille, 2020; Goodman-Bacon, 2021;
Borusyak, Jaravel, and Spiess, 2021; Callaway and Sant’Anna, 2020; Sun and Abraham,
2020). We show that an LP approach can successfully address this problem.

The main result is that in this setting a properly specified LP regression, with properly
defined treated and control units following the ‘clean control approach’ of Cengiz et al.
(2019), is able to identify a convex weighted average treatment effect without incurring in
the negative weights problem. We characterize explicitly the weights assigned to each
cohort-specific treatment effect, and show that they are non-negative and proportional
to group size and treatment variance. We also discuss how a simple re-weighted LP

regression can recover an equally-weighted average treatment effect on the treated.

2.1 General setup and notation

We consider the following general setup. An outcome y;; is observed for i = 1, ..., N units
over t = 1,..., T time periods. Units can receive a binary treatment, denoted by D;; € {o,1}.
For now, treatment is permanent (or absorbing), so we have D;; < Dj; for s < t. We let p;
denote the period in which unit i enters treatment for the first time, with the convention

p; = oo if unit i is never treated during the observed sample.



Define groups (or treatment cohorts) ¢ € {o,1,...,G} as exhaustive, mutually exclu-
sive sets of units. Groups are defined so that all units within a group enter treatment at
the same time, and two units belonging to different groups enter treatment at different
times. Group g = o is the never-treated group (i.e., the set of units with p; = o0). We
denote the time period in which group g enters treatment as pq.

Using the potential outcomes framework (Rubin, 1974), we let y;(0) denote the
potential outcome that unit i would experience at time ¢ if they were to remain untreated
throughout the whole sample period (that is, if p; = 00). We let y;;(p) denote the outcome
for unit 7 at time ¢, if unit i were to enter treatment at time p # co. Observed outcomes can
then be written as y;; = y;;(0) + Zg=1 (vir(P) ~yir(0)) x 1{p; = p}.2

Define the (unit- and time-specific) treatment effect at time ¢ for unit i which enters

treatment at time p; # oo as
Tit = Yir(Pi) = ir(0)
We then define the (group-specific and dynamic) average treatment effect on the treated

(ATT) at time horizon h for group ¢ which enters treatment at time pg as

T = E Vi poth(P2) =~ Yipesn O lpi = Pg} : (1)

In other words, T;f represents the average dynamic effect, i periods after entering into
treatment, for all units belonging to a group g that enters treatment at time pyg.3
Throughout the discussion which follows, we will make use of the assumptions of
parallel trends and no anticipation, the two essential assumptions that underpin the DiD
approach. We state these assumptions unconditionally though later we will condition on

covariates.

Assumption 1. No anticipation
E [yit(P) —yit(o)} =0, for all pand t such that t < p.

This assumption ensures that units do not respond now in anticipation of a treatment

that will be received in the future.

Assumption 2. Parallel trends

E [y;#(0) —yi10)|p; = p] = E [yit(0)—y;1(0)] ,forall t € {2,..., T} and all p € {1,..., T, c0}.

2Similar notation is used, for example, in Callaway and Sant’Anna (2020) and Sun and Abraham (2020).
3This object is analogous to the cohort-specific treatment effect on the treated (CATT) defined in Sun
and Abraham (2020).



This assumption ensures that, had treated units been left counterfactually untreated,
they would have evolved over time in the same manner as the control units have. This
assumption is made to ensure that the measured treatment effect cannot be explained by

differences in time trends between treated and control units.

It is convenient for the exposition of our methods to be more specific and assume a
simple data-generating process (DGP) for untreated potential outcomes, which respects

the parallel trends assumption. Following the recent DiD literature, we will also assume

Elyit(0)] = a; + ¢, (2)

where a; is a unit-specific fixed effect, and J; is a time-specific effect common to all units.

Finally, let us define three regression specifications of interest, which can be estimated
in our panel of N units and T time periods, or in some subset of it: static two-way fixed-
effects (static TWFE); event-study two-way fixed-effects (event study TWFE); and local
projections (LP). We will discuss, compare and evaluate these specifications throughout

our discussion.

Specification 1. Static two-way fixed-effects regression (static TWFE)

STWFE , {STWFE , oSTWFE STWEE
Yit = &; + 0y +B Dj; +ej , (3)

the most basic specification, where the « are unit-specific intercepts and the J are common

time-specific fixed effects, and we denote with e the error term.

Specification 2. Event study two-way fixed-effects regression (event study TWFE)

H
ETWFE | sETWFE ETWFE ETWEE .
Yit = &; + 0y + ) Diypn+ey ;i Q=o, (4)
h=0Q

ETWFE _ vh ETWFE
Z]_ 'Y]'

where By = provides the event study TWFE estimate for the effect at

horizon h after treatment (o < h < H). Fixed effects « and ¢ are again included, and an

IBEhT WEE _ _Z],—:l_h 'y]].STWF E is likewise an estimate of possible

pre-trends at horizon h before treatment (-Q < h < —1). An equivalent specification of

error term e. Also note that

the event study TWFE regression uses the first difference of the treatment indicator AD
instead of its level D, except for the H-th lag, which is taken in level.



Specification 3. Local Projections regression (LP)
Ahyit = 5? + ,B%PADit + 65;,' for h = o,1, ...,H . (5)

For the LP specification in Equation 5, we take the long difference of the outcome
ApYir = Vi —Yi—1. As a result of the differencing, note that the LP specification no
longer includes unit fixed effects for comparability with the two previous specifications.
Moreover, in Equation 5, a different regression is needed for each time horizon h, in
contrast to the previous two specifications. Given our assumptions on a staggered
treatment that is absorbing, if treatment is administered at time s, then D;; =1 fort > s
and hence AD;; = 1 for s = t, but AD;; = o for t #s.

Turning to the coefficients of interest, in all specifications the  terms are population

regression coefficients, while the OLS estimates of these coefficients will be denoted by j.

2.2 Basic DiD setting with two groups and two time periods

The link between LP and DiD is easiest to see in a basic 2-groups/2-periods (2x2) setting.
In this setting, an LP regression at horizon & = o is equivalent to a first-difference
regression or a static TWFE regression, both widely-used DiD implementations.

Hence, assume two groups of units, two time periods, and a binary treatment. In the
tirst period (pre-treatment) no unit is treated. In the second period (post-treatment) one
group of units is treated while the other remains untreated. In terms of the general setup
and notation introduced above, we are setting T = 2, and therefore t € {1,2}. Moreover,
we have g € {0, 1}, where group o is the control group and group 1 the treatment group.
For units in the treatment group p; = p; = 2. For units in the control group p; = po = 0.

Our interest is in estimating the ATT in period t = 2, defined as E[y;,(2) —y;,(0)|p; = 2].
Given the no-anticipation and parallel trends assumptions (Assumptions 1 and 2) stated

earlier, the ATT in this setting can be rewritten as follows,

ATT = Ely;,(2)-yix(0)|p; = 2]

E[(¥:2(2) = ¥i1(0)) = (¥i2(0) = yi1, (0))|p; = 2]
[
[

= Elyi»(2)~¥i1(0)|p; = 2] - Ely;5(0) — yi1(0))|p; = o0]
= E[Ayj|pi = 2] - E[Ay;,|p; = 0] = p**2.

In the second line we simply add and subtract y;;(0); in the third line we use Assumption
2 (parallel trends); and in the last line we make use of Assumption 1 (no anticipation).

B2 is thus the well-known 2x2 DiD estimand (Angrist and Pischke, 2009, pp. 227-233).



Now consider an LP regression (Equation 5) with time horizon /& = o. In this 2x2
setting, this boils down to a simple first-difference regression

AYit = Yia=Yir = 5+ B  ADjz +¢j5 .
Since AD;, = D;, in this simple case, we therefore have that
;ng = E[Ayi2|Di2 = 1]_E[Ayi2|Di2 =o] = ‘Bzxz =ATT.

Thus, in the 2x2 setting, the LP regression at horizon h = o is equivalent to a first-
difference regression, and its population coefficient corresponds to the 2x2 DiD estimand
**2, which (given no-anticipation and parallel trends) equals the ATT. As is well known,
in this setting also the estimand BT"FE from the static TWFE regression of Equation 3 is
equivalent to the coefficient from a first-difference regression and corresponds to 2
(Angrist and Pischke, 2009, pp. 233-236). We thus have g5l = gSTWFE = g2x2 = ATT.

2.3 Two groups and multiple time periods

We now consider a slightly extended setting, with two groups (treated and control),
multiple time periods T > 2, and where all treated units enter treatment in the same time
period. Also in this setting, we show that an LP regression is a way to implement the
DiD method and recover the (dynamic) ATT.

Specifically, assume that all units in the treatment group enter treatment at time s,
with 1 < s < T, and remain treated thereafter, while control units are never treated
over the sample period. Therefore, in pre-treatment periods ¢t < s no unit is treated. In
post-treatment periods ¢ > s, units in the treatment group are treated, while units in
the control group are not. In terms of our general setup and notation, we are setting
g € {o, 1}, where group o is the control group and group 1 the treatment group. For all
units in the treatment group, p; = p1 = s. For all units in the control group, p; = po = .
With only one treated cohort, the dynamic ATT (Equation 1) does not need the treatment
group indicator, and becomes simply 7, = E[y; ¢,1,(5) = ; s41,(0)|p; = s].

Again, via no-anticipation and parallel trends assumptions (Assumptions 1 and 2),

T = ElYjsn(s) = Yis4n(0)|pi = s
= E[(¥is+h(8) —¥is-1(0) = (Vi s:1(0) — Y s (0)) p; =l
= E[yi,s+h(s) ~Yis—1 (0)|p; = s]- E[yi,s+h(0) —VYis-—1 (0)|p; = o]

= E[Apyislpi = s1-E[Apy;i biD

pl=oo] = ;Bh 7




where ,BhD iD is the DiD estimand for the dynamic ATT & periods after treatment and we
have applied Assumptions 1 and 2 in lines 3 and 4 as we did previously.

The population coefficient IB%P from an LP regression (Equation 5) corresponds exactly
to this estimand. To see this, note that in this setting the LP regression of Equation 5 is
equivalent to the following cross-sectional regression, estimated on a subsample including
all units, but only for the time period t =5,

h

h o oLP
Visth—Yis1 =0 + P ADjs+ej,.

Therefore we have

ADi,S = O] = ﬁhDiD =T.

LP
B = E[Any;s|AD; ¢ = 1] - E[Apy;

This equivalence holds because when t # s there is no variation in the regressor AD;;.
Hence, observations with t # s do not contribute to the estimated coefficient ,B%P , and the
coefficient ﬁkp is only identified using observations for time ¢ = s.

From results in the recent literature on DiD (for example de Chaisemartin and
D’Haultfceuille 2020; Gardner 2021; Sun and Abraham 2020; Goodman-Bacon 2021),
we know that in this setting, with only one treated cohort, and under Assumptions 1 and
2, it also follows that the coefficients in the event-study TWFE regression (Equation 4)
correspond to the Tj, estimands.# Moreover, the B5TWFE estimand from the static TWFE
regression (Equation 3) equals the ATT, defined as E[7;|D;; = 1].5

2.4 Staggered treatment adoption with dynamic but homogeneous

treatment effects

We now allow for multiple treated groups which enter treatment at different points
in time (treatment is staggered). For now, we assume that the average treatment effect
trajectory (or path) does not differ across treatment cohorts (i.e., we assume that treatment
effects are homogeneous). In terms of our general setup and notation, we now have G > 1,

meaning that we have more than one treatment group, and Tﬁ =1, forall g > o.

4This can be seen using the decomposition of the event-study TWEFE coefficients (ﬁETWF E'in our notation)
provided by Sun and Abraham (2020). This shows that ﬁgTWF E is equal to 7, plus a bias term that can arise
if the ATE is heterogeneous across cohorts. With only one treatment cohort, obviously, heterogeneity across
cohorts cannot arise, and ,BETWF E-q,.

50ne way to see this is to use the decomposition of the static TWFE into a weighted average of treatment-
cohort specific ATTs (de Chaisemartin and D’Haultfceuille 2020, p. 2970; Gardner 2021, p. 7). This
decomposition implies that, when there is only one treatment cohort and the panel is balanced, g5T"FE
corresponds to an equally-weighted average of all the cell-specific ATTs.

10



In this setting with staggered treatment and dynamic but homogeneous treatment
effects, we still have that an LP regression (Equation 5) augmented with an adequate
number of lags and leads of the treatment indicator is able to recover the average treatment
effect path under the parallel trends and no-anticipation assumptions introduced earlier.

Here is how we arrive at this result. Under Assumptions 1 and 2 and assuming that

treatment effects are homogeneous, mean observed outcomes at time t + 1 are given by

EWipn] = Elien©] + Epo [(BWitn(p) = ipen(0) x 1{pi = p}]

Eipn©@] + L2, Ghj < 1{pi = =} ©)
= a; + 5t+h + T ADi,t + Z;Z_h Th+j ADi,t—j'
h+o
Hence, by now subtracting E[y; ;] from both sides of the previous expression and
defining (5? = 84, — 01_1, we obtain,®
n : S
E[Apyi] = 0 + 1, AD; s + Z Tyj ADj gy + Z [Th4j = Tj] AD;jtj -
j=1 j=1

Therefore the dynamic ATT T, corresponds to the ,B%P population coefficient in the
following LP regression,

0
Ayt = 6F + i ADig + ZZ 0] AD;yj +¢ly. )
]j#o
This LP regression includes lags of the differenced treatment indicator, but also its leads
up to period t + h. Leads are necessary to account for the possibility that a unit might
enter treatment between period t + 1 and period t + h.
What do the static and event-study TWFE specifications of Equation 3 and Equation 4
identify in this setting with staggered treatment and dynamic but homogeneous effects?
Results from the recent DiD literature show that a static TWFE regression (Equation 3)
can suffer from bias if treatment effects are dynamic (in the sense that 7, # 7, for
some h), even under parallel trends, no-anticipation, and homogeneity across treatment
cohorts.”
Intuitively, the bias comes from the fact that previously treated units are effectively
used as controls for newly treated units. Since previously treated units might still be

®Note that ElYitq] = aj+ 0+ ;ﬁl Ti_1ADj .

7Heterogeneous effects, which we consider below in Section 2.5, would make this problem worse.

11



experiencing a delayed dynamic response to treatment, these treatment effect dynamics
are effectively subtracted from the static TWFE treatment effect estimate (Goodman-Bacon,
2021). That is, delayed dynamic responses to treatment can enter the static TWFE estimate
(Equation 3) with a negative weight (de Chaisemartin and D"Haultfeeuille, 2020).

Under the assumption of homogeneous treatment effects, however, it is still the case
that event-study TWEFE regression (Equation 4) does not suffer from this bias and, like
the LP regression with lags and leads of treatment discussed above, is able to recover
the average treatment effect path under parallel trends and no anticipation, as long as a
sufficient number of lags of the treatment indicator is included (see Sun and Abraham,
2020, in particular Proposition 4 and Equation 19). Intuitively, the lagged treatment
indicators control for the lagged dynamic effects of previous treatments, which in this
setting are the same (in expectation) for all units.

2.5 Staggered treatment adoption with dynamic and heterogeneous

treatment effects

For greater generality, we now abandon the assumption of homogeneity of the treatment
effect path, and allow for heterogeneous treatment effects across different cohorts. For-
mally, we have 'cﬁ # ’cﬁ/ for at least some time-horizon h and some pair of groups ¢’ # g.
This more general case, because of the problems it can cause, has been the main focus
of a growing recent literature (e.g., de Chaisemartin and D’Haultfeeuille, 2020; Sun and
Abraham, 2020; Callaway and Sant’Anna, 2020; Goodman-Bacon, 2021; Borusyak, Jaravel,
and Spiess, 2021).

With heterogeneous treatment effects of this form, it is well known that the static
TWEFE estimator (Equation 3) is biased both because of dynamic lagged effects and
because of heterogeneity. Let us define a cell as a given treatment group ¢ in a given
period t. de Chaisemartin and D’Haultfceuille (2020) show that under no-anticipation
and parallel trends B5T"WFE in Equation 3 equals in expectation a weighted average of all
cell-specific ATTs, but with weights that can be negative. Negative weights introduce bias:
for example, positive cell-specific effects can enter the formula for the TWFE cofficient
with a negative sign.

Another way to see this problem is through the lens of the Goodman-Bacon (2021)
decomposition theorem, which shows that the static TWFE estimator in Equation 3 is an
average of all potential 2x2 comparisons in the data, with weights based on subsample
shares and treatment variances.

The problem is that some of these 2x2 comparisons are ‘unclean’ comparisons in which
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previously treated units are used as controls for newly-treated units. These ‘unclean
comparisons’ are the source of the ‘negative weights’ bias of static TWFE.8

Furthermore, in the case of heterogeneous treatment effects across cohorts, it is also
known that the event-study TWFE specification (Equation 4) is generally biased (Sun
and Abraham, 2020). Specifically, Sun and Abraham (2020) show that the relative-period
coefficients (i.e., the coefficients on leads and lags of treatment in Equation 4) can be
contaminated by effects from other periods.

In short, the two most common DiD methods fail to work in this general type of setting,
which has led to the search for, and proliferation of, so many alternative estimators.

To understand the relation between LP and DiD in this setting, we can start by noting

that here E[y; ;,,] is determined as follows,

EWipen] = Elyipn©] + Lot [(E;, t+h(P)—1/i 11(0)) X 1{p; = p}]
= Ely; ] + % (Z_ n T X Hpg = 1= ]}> x 1{p; = Pg}]
= Ely;pn(0)] + ZgG:1 ]——h (T;i] X 1{Pg =t-j} x AD;; ])}

= aj+ 0y + chzl TgXAD'tXI{t:pg}]
+ Zgz Iﬁﬂ X ADy_j x 1{t = pq +j}>
+ Zg=1 _Z]'=1 T]f_j X ADyyj ¥ 1{t = pg _]}>

Subtracting E[y; ;_,] from both sides, we obtain,?

E[Apyil = 6 + TS, | x ADjp x 1{t = Pg}}
+ Zngl }?21 (T;ir] Tfl) X AD;; j x 1{t = Pg+]})} (8)
+ Y Z;-Ll Tﬁ_j X ADjpyj x 1{t = pg —]})} :

Without appropriate adjustment to take into account the last two sums on the right-
hand side of Equation 8, the simplest LP regression of the form seen in Equation 5 would
be mis-specified in this setting. Indeed, the population regression coefficient /SIEP in

8Goodman-Bacon (2021) also shows that under parallel trends and no anticipation (assumptions 1 and
2), plimy,_, o f5TWFE = VWATT - AATT, where VIWATT is a convex variance-weighted average of ATTs from
all possible 2x2 comparisons in the data, and —AATT is bias coming from dynamic and heterogeneous
effects. Seen in this way, the bias term is equal to a weighted sum of changes in treatment effects within
each group.

9Note that in this setting E[y; ;] = &; + 61 + Zgzl[zj?'il 'c]é: (AD; i x 1{t = pg+j}].
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Equation 5 would correspond to the following expression,

E[BEF] = E[Apyilt, ADjy = 11— E[Apyilt, AD;; = o]
= E |25 x 1{t = peh|AD; = 1]
~E |58 |52, ((@5,-75,) % ADjyj x 1{t = pg +/}) | |ADs = o]

~E X [T, (T % AD;pg x 1{t =pg=j} ) | |ADy = o] .

9)

Equation 9 shows that, without appropriate adjustment, the population regression co-
efficient ,B%P from the simplest LP regression of Equation 5 corresponds to a weighted
average dynamic ATT, plus two bias terms.

The first source of bias is the presence of previously treated units in the control group,
i.e., observations such that AD; = o but AD;; ; # o for some j > 1. These previously
treated units contribute to the estimated counterfactual for units entering treatment at
time ¢, as if they were untreated, although they might in fact be experiencing dynamic
treatment effects. This bias exists as long as, for some treatment cohort g at some time-
horizon h +j, we have Tg 4 # T]‘S: - meaning that treatment effects evolve gradually over
time. As a result, the dynamic changes in treatment effects that these previously treated
units might be experiencing enter Equation 9 with a negative sign. This is a manifestation
of the ‘negative weights” bias discussed above and noted in the recent literature on
DiD (Goodman-Bacon, 2021; de Chaisemartin and D’Haultfceuille, 2020; Callaway and
Sant’Anna, 2020; Sun and Abraham, 2020; Borusyak, Jaravel, and Spiess, 2021).

Moreover, in the LP setting, a second potential source of bias is the presence in the
control group of units that are treated between t + 1 and t + 1, i.e., observations such that
ADj; =obut AD;;,; # o for some jin 1 < j < h.*°

Contribution A properly specified LP regression which we call LP-DiD solves all of
these problems and identifies a convex combination of cohort-specific effects.

1°As Equation 8 shows, one solution would be a LP regression that identifies separately the effect for each
group by interacting group indicators with the contemporaneous differenced treatment indicator, while
at the same time controlling for interaction terms between group indicators and the leads and lags of the
differenced treatment indicator. These interaction terms ‘clean’ the estimated counterfactual from the bias
coming from the influence of previously treated units. Moreover, this is equivalent to interacting the leads
and lags of the differenced treatment indicator with time indicators. One could then obtain an overall ATE
by computing some convex combination of all the individual group-specific effects. This solution could be
fruitful in some settings and has similarities with the interactive fixed effects estimator proposed by Sun
and Abraham (2020), but generally has some drawbacks. In practical applications, it involves estimating
a potentially very large number of interaction terms, where the coefficients are of no economic interest.
Moreover, our aim in this paper is to show that it is possible to directly estimate a convex combination of
all the cohort-specific effects, without having to first estimate them separately and then aggregate.
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LP-DiD consists, in essential form, of estimating the LP specification of Equation 5 in
a restricted sample that only includes newly treated observations (ADj; = 1) and not-yet
treated ones (AD;; ; = o for -h < j < o0). Under the assumption of absorbing binary
treatment, the restriction imposed on the control group (AD;; ;j = o for -h < j < o)
simplifies to D; 1, = o. Intuitively, as recent literature has made clear and as Equation 8
and Equation 9 illustrate, ‘negative weights” bias comes from unclean comparisons in
which previously treated units are used as controls for newly-treated units. Excluding
these ‘unclean” observations from the control group eliminates the bias.

Formally, consider the following specification of an LP-DiD regression,

LP-DiD regression Estimate the regression

Yiteh—Yip—1 = ,B%p —-DiD ADj; treatment indicator
+ (5? time effects

+ez forh=o,...,H,

by restricting the estimation sample to observations that are either

newly treated: ADj =1, (10)
10

or clean control:  D; .y =0.

By removing previously treated observations and observations treated between f + 1
and t +h from the control group, ‘B%P ~DiD from Equation 10 provides a convex combination
of all group-specific effects 'cﬁ . Indeed we have

E[ IB%P_DiD]

E(Apyitlt, ADj = 1) = E(Apyi|t, ADjy = 0, D 44, = 0)
E[XS (1 x 1{t=pg}) |aD; = 1]

The clean control condition of Equation 10 can equivalently be implemented by
estimating Equation 5 in the full sample with a full set of interaction terms between a binary
indicator for ‘unclean’ (i.e., previously treated) control observations and time effects. With
absorbing treatment, this binary indicator is equal to UCj; = 1{ADj; = o} X 1{D; ), = 1}.
With control variables (which we will discuss in Section 3 below), the UC;; indicator
should also be interacted with any included covariates. Of course, this is just another and
completely equivalent way of excluding unclean controls from the estimation sample.

The LP-DiD approach can be valuable also in settings in which treatment effects

are assumed to be homogeneous. As shown above (Section 2.4), under homogeneous
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effects, simple LP or dynamic TWFE specifications are sufficient to obtain an unbiased
estimate, provided that a sufficient number of lags of the treatment indicator is included.
However, there are two reasons for still using LP-DiD (with a clean control condition)
also in that setting. First, and most obviously, LP-DiD is robust to possible failure of the
homogeneous effects assumption. Second, even if homogeneity holds, LP-DiD relieves
the researcher from the problem of selecting the appropriate number of lags.

2.5.1 Weights of the LP-DiD estimator

We can explicitly characterize the weights assigned to each cohort-specific effect Tf; when
the LP-DiD specification (Equation 10) is estimated with OLS. The key result is that, under
parallel trends and no-anticipation (Assumptions 1 and 2), the LP-DiD estimator without
covariates identifies a weighted average of all cohort-specific treatment effects, with
weights that are always positive and depend on treatment variance and subsample size.
Here we present this result. A simple formal derivation based on the Frisch-Waugh-Lovell
theorem and an extension to the case with covariates are provided in Appendix A.

To illustrate the result, we need to introduce further definitions. Recall that the time
period in which group ¢ enters treatment is pg. For each treatment group g > o, define the
clean control sample (CCS) for group g at time horizon h (denoted as CCS, 1) as the set of
observations for time t = pg that satisfy the sample restriction in Equation 10. Therefore
CCS,g  includes the observations at time pq for all units that either enter treatment at pg
or are still untreated at p,j,. In other words, CCS, j, includes observations at pg for group
g and its clean controls.

Under parallel trends and no anticipation (Assumptions 1 and 2), the LP-DiD estimator
,B%P ~DiD jdentifies the following weighted average effect,

E(‘ng—DiD) — ; wél;_DiDTf' (11)
870

The weight attributed to each group-specific effect is given by

N
WLP-DiD _ " CC5gn 1gn(rtc.g.0)]

- , (12)
g/h Zg?/o NCCSg,h [ng,h(nclg’h)]

where NCCSgh is the number of observations in the clean control sample for group g at
time-horizon k; ngp =Ng/ NCCSg,h is the share of treated units in the CCS5, j, subsample;
and 1,55 =Ne g,/ NCCSg,h is the share of control units in the CCS, , subsample."!

The derivation of these weights is in Appendix A.
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Thus, in short, the LP-DiD estimator ,B%P ~DiD jdentifies a variance-weighted ATT
(VWATT in the terminology of Goodman-Bacon, 2021).

2.5.2 Obtaining an equally-weighted average effect

If a researcher is instead interested in an equally-weighted ATT, there are two equivalent
ways to obtain it within an LP-DiD framework. The first is to employ a re-weighted
regression. The second is to use regression adjustment.

Indeed, Equations 11-12 imply that estimation of an LP-DiD regression (Equation 10)
through weighted least squares, assigning to an observation belonging to CCS, j, a weight
equal to 1/ (wg;l_D iDy Ng), identifies the equally-weighted ATT.

LP-DiD

In practical applications, the weight (w o

samples sizes and shares of treated and control units in the sample and using Equation 12,

/Ng) can be obtained by computing sub-

or through an auxiliary regression. Specifically, consider an auxiliary regression of AD on
time indicators in the sample defined by Equation 10. Define Af)g,pg as the residual at

time pg for a unit belonging to group g.'* The Frisch-Waugh-Lovell theorem implies that

‘ AD
(wélll)/l—DZD /Ng) — glpa ,
Yo NgADg p,

where further discussion can be found in Appendix A.

Another equivalent way to obtain an equally-weighted ATT is to estimate the LP-DiD
specification with the clean control condition of Equation 10 through regression adjust-
ment. Here, regression adjustment uses clean control units to estimate a counterfactual
outcome change for each treated unit, and then compute an average estimated effect
assigning equal weight to each treated unit, thus estimating an equally-weighted ATT.

In particular, regression adjustment can be implemented as follows. Regress Apy;;
on time effects using only clean control observations (i.e., observations with D; ;. = 0).
Use the estimated coefficients to get a predicted value in absence of treatment Ay, for
each treated unit. The ATT is then estimated as N7k YjeTr [Anyit — Ap¥ir], where TR
is the set of treated observations (i.e., the set of observations with AD;; = 1).'3 This

Note that Af)g,pg will be identical for all units belonging to the same group.

31t is easy to implement this method for recovering the equally-weighted ATT using standard statistical
software. The following is an example in STATA syntax:
teffects ra (Dhy i.time) (dtreat) if D.treat==1 | Fh.treat==0, atet vce(cluster unit)
where vy is the variable measuring the outcome of interest; h is the time-horizon of the estimate; Dhy
= Y5 —Yi—1; dtreat is the first difference of the binary treatment indicator; time is a variable indexing time
periods; unit is a variable indexing units, and we are clustering standard errors at the level of units.
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regression-adjustment implementation of LP-DiD constitutes an imputation estimator, in
the same sense as in Borusyak, Jaravel, and Spiess (2021).

Finally, note that in this setting without inclusion of covariates, the LP-DiD estimator
,B%P ~DiD js numerically equivalent to the estimate from a stacked regression approach
as implemented in Cengiz et al. (2019)," while the re-weighted version of LP-DiD is
numerically equivalent to the estimator proposed by Callaway and Sant’Anna (2020).
However, the LP-DiD implementation is simpler and computationally faster. Relative to
Cengiz et al. (2019) it is also less prone to errors in practical applications, given that it
does not require the reshaping of the dataset in stacked format. Moreover, as we discuss
below, the LP-DiD specification is easier to generalize, for example by conditioning on

pre-treatment values of the outcome or using other covariates.

2.5.3 Alternative pre-treatment base periods

We now discuss how, in some settings, there can be efficiency gains from adopting an
alternative LP-DiD specification, one in which the long difference of the outcome variable
is taken relative to its average value over some interval before ¢, instead of relative to just
its first lag.

tr_:lt—k y; ¢ instead of
ApYit = Vi p+n —Yt-1 as the dependent variable. The motivation for considering such an

Formally, this alternative specification uses AEMD Vit = Yiteh— § L

alternative base period in the long difference of the outcome is a possible efficiency-related
concern with the LP-DiD specification of Equation 10 (as well as the simple LP regression
of Equation 5).

Typically, an LP uses the long difference Ayy;; = y; 14, —y+—1 as the dependent variable.
Period t -1 is thus used as the pre-treatment base period: for a treatment event occurring
at time s, the expected value of the outcome in the pre-treatment period in the treated
group and its clean controls are estimated from y;, ;. However, the number of time
periods available for estimating the expected value of the outcome in the pre-treatment
period is larger than just s—1: observations for all time periods ¢ < s can potentially
be used. For this reason, using a single pre-treatment period as the baseline may be
inefficient, and produce more noisy estimates than necessary.

This concern can be accommodated by using an average of pre-treatment observations
(% Zt_zlt_k Y; r) as the baseline, instead of just y;_;. The dependent variable thus becomes
AEMD Yit = Yiteh— % Zir_:t—k Y r- This gives rise to the following ‘pre-mean-differenced’
(PMD hereafter) specification of LP-DiD,

'4See Appendix A for more details about this equivalence.
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PMD LP-DiD regression

f—

1 1 _ pPMD LP-DiD
Yitvh — % Yo Vit = 5;1 "YAD,

treatment indicator
+ (5? time effects
+el}.‘t forh=o,...,H,

restricting the estimation sample to observations that are either:

newly treated: ADj =1, (13)
13
or clean control:  D;,p =0.

(Note here that by setting k = t — 1, one can use all available observations for estimating
the expected value of the outcome in the pre-treatment period.)

The results presented earlier in this Section and in Appendix A imply that IBEMD LP-DiD
identifies a convex weighted average of cohort-specific effects, with the same weights
wtPPID discussed in Section 2.5.1. Also in this case, weighted regression or regression
adjustment can be employed to obtain an equally-weighted ATE (Section 2.5.2).

The potential advantages and risks of differencing with respect to the pre-treatment
average (‘pre-mean differencing’) relative to differencing over a single lag (‘first-lag
differencing’) have been discussed in the recent literature (a review of these discussions
is provided in de Chaisemartin and D’Haultfoeuille 2022, pp. 18-19). The potential
advantage of pre-mean differencing is the efficiency gain discussed above. This advantage
is greater the lower the autocorrelation in untreated potential outcomes. A potential risk
is that, under some deviations from the parallel trends assumption, pre-mean differencing
can amplify the bias relative to first-lag differencing. If parallel trends holds between
periods s and s + i (s being the time of treatment), but not in earlier pre-treatment periods,
tirst-lag differencing will still be unbiased, while pre-mean differencing will be biased.
In this sense, first-lag differencing relies on a weaker parallel trends assumption than
pre-mean differencing (Marcus and Sant’Anna, 2021). Moreover, if parallel trends does
not fully hold at any time period, and the gap in average untreated potential outcomes
between treated and controls increases over time, then pre-mean differencing will be
more biased than first-lag differencing.

The PMD version of the LP-DiD estimator (Equation 13) is analogous to the estimator
proposed by Borusyak, Jaravel, and Spiess (2021) (BJS thereafter), which also implicitly
uses pre-mean differencing. In fact, in the special case of one single treated group,
it is easy to see that PMD LP-DiD with k = t -1 is numerically equivalent to the BJS
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estimator.”> With more than one treated group, the BJS estimator does not have a closed
form expression, and it is therefore not straightforward to assess with precision its relation
to our PMD LP-DiD estimator. However, the pre-period mean differencing means that
the two estimators use similar information, and indeed our Monte Carlo simulations
(presented in Section 4 below) show that with more than one treated group, when using
reweighting to obtain an equally-weighted ATT, the two estimators produce very similar
(although not identical) point estimates.

Although very similar, PMD LP-DiD might offer practitioners some advantages over
the BJS estimator. First, it is easy to provide an analytical expression for PMD LP-DiD even
in the case of more than one treated group, unlike for the BJS estimator."® Movever, unlike
the BJS estimator, PMD LP-DiD can be implemented using simple OLS (or weighted least
squares) regression, using commonly used and well understood methods for statistical
inference. Third, as we will discuss in Section 3.1 and as our simulations and empirical
application will illustrate, the structure of the LP-DiD specification allows one to control
for pre-treatment lags of the outcome and of other time-varying covariates.

That said, BJS prove efficiency of their estimator of the equally-weighted ATT under
the Gauss-Markov assumptions. Given that in general settings with more than one treated
group reweighted PMD LP-DiD and BJS are not numerically equivalent, it follows that BJS
is more efficient as an estimator of the equally-weighted ATT under these assumptions.

However, we note that (as shown in our simulations below), any differences in
point estimates between reweighted PMD LP-DiD and BJS are very small, therefore the
advantages of PMD LP-DiD are obtained at a very small efficiency cost. Indeed our first
simulation (Section 4 below), in which both estimators are unbiased, shows that the root
mean squared error of the two estimators is almost identical.

It also bears noting that efficiency of the BJS estimator is only guaranteed under the
Gauss-Markov assumptions. These require, among other things, no auto-correlation in

untreated potential outcomes, which might be seen as implausible in most panel data

5 With one single treated group g that enters treatment in period pg, the BJS estimator has a closed form
(de Chaisemartin and D'Haultfoeuille, 2022, pp.18-19). In terms of our notation, it is equal to

Pg—T pg—T
- 1 1
Ng* Y Yipgsh = 5 —7 Y yi,k] ~Negn Y. [yi,pg+h E— Y vik
icg Ps=1 k= i#g,i€CCS, ), Ps=1 k=
In this one-group setting, this is exactly equal to the ‘B;:MD LP-DiD egtimator.

16With one single treated group, the PMD LP-DiD estimator (like the BJS estimator) is equal to the
expression in foonote 15. With more than one treated group, the PMD LP-DiD estimator is equal to a

weighted average of the expression in footnote 15 across all treated groups, with weights given by wg,:‘D iD

in Equation 12. The reweighted PMD LP-DiD estimator is equal to a simple average of the expression in
footnote 15 across all treated groups.
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applications (de Chaisemartin and D’Haultfoeuille, 2022, p. 18). Moreover, if there is
little heterogeneity in treatment effects between treatment cohorts or a variance-weighted
effect is as satisfactory as an equally-weighted effect, variance-weighting (as done by

LP-DiD or PMD LP-DiD without reweighting) can be more efficient than equal weights.

2.5.4 Composition effects

In finite samples, the LP-DiD specification of Equation 10 might suffer from composition
effects because the set of treated and clean control units can change across different time
horizons h. Note that the composition effect from a changing set of treated units is also
present in other available DiD techniques, including conventional TWFE estimators, while
composition effects from a changing control set are a result of the way the clean control
condition is specified in Equation 10.

There is a way to rule out composition effects, but at a cost, since it requires a reduction
in the number of observations which can reduce statistical power. To keep the control set
constant across time horizons, one can modify the clean control condition, defining clean
controls at all horizons as units such that D; 1,y = 0, where H is the maximum horizon
considered in estimation. Moreover, to keep the set of treated units constant across time
horizons, one can exclude from the estimation sample treatment events which occur after

time period T -H (i.e., exclude treatment cohorts with pe > T - H).

3 Extensions

In this section we extend the LP-DiD approach introduced in the previous section to
a variety of settings encountered in empirical research. We begin by discussing the
inclusion of covariates. Covariates can help in two ways: (1) as a control for variation in
treatment assignment; and (2) as a way to improve the efficiency of the estimated ATT.
Next we consider settings in which treatment is not absorbing, that is, units can enter and
exit treatment multiple times. In addition, we briefly comment on non-binary treatments.
Because the LP-DiD approach is based on simple regression, it can naturally normalize
the treatment effect depending on treatment intensity (or dose), though we leave a more
thorough development of this topic for another paper. However, this discussion helps
us tee up a brief comment on the link between DiD and the impulse responses used in

macroeconomics to establish the parts of commonality and departure.
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3.1 Inclusion of covariates

We will now go on to show how the LP-DiD specification of Equation 10 can easily
be augmented to include both time-invariant and time-varying covariates. Including
covariates might be necessary for identification, if the parallel trends assumption only
holds conditional on (constant or time-varying) variables that determine selection, or to
increase precision.

A distinctive feature of the LP-DiD approach is that it allows to control for pre-treatment
values of time-varying covariates, including lagged outcome dynamics. This is made
possible by the structure of the LP specification. Unlike a standard event-study TWFE
specification or most alternative estimators proposed in the recent literature, the LP
specification implies that any lagged variable included in the estimating equation is
measured before treatment.”

Formally, in the special case with binary absorbing treatment, an LP-DiD specification
which controls for K lags of the outcome dynamics and also controls for contemporaneous
and lagged values of a vector of exogenous or pre-determined covariates, x;; can be written

as follows.18

LP-DiD regression with exogenous covariates and lagged outcome dynamics

Yiteh —Yit—1 = ,Bép -DiDAD,, treatment indicator
+ ZkK: L ’)’ZA]/i,t—k outcome lags
+ 'yhxl-t covariates (14)
+ 5? time effects
+e§lt; forh=o,...,H,

restricting the sample to observations that are either

newly treated ADj; =1, (15)
15
or clean control  D;;,p, = 0.

70f course, controlling for pre-treatment outcome dynamics (as well as any other exogenous or pre-
determined covariate) will be appropriate in some applications but not in others. A discussion of the
conditions under which it is appropriate or necessary to control for lagged outcome dynamics and other
covariates in the DiD setting is outside the scope of this paper (see for example Chabé-Ferret 2015; Caetano,
Callaway, Payne, and Rodrigues 2022). What matters here is that the LP-DiD estimator offers flexibility in
this respect: the researcher can decide whether to control for lagged outcomes and other covariates based
on the application.

BOf course, the vector of covariates x;; can include not only variables taken in levels and measured at
time t, but also differenced or lagged variables.
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This setup requires variants of Assumptions 1 and 2, labeled 3 and 4, where the statement
of the assumptions is made conditional on outcome lags and other covariates x;;."9

Appendix A.2 discusses the weights assigned to each group-specific effect in the speci-
tication that includes control variables. The main result is that the weights are guaranteed
to remain the same as in Equation 12 if covariates have linear and homogeneous effects.
In more general settings, the presence of covariates will alter the weighting scheme in
ways that are difficult to characterize analytically. In applications, the weights can still be
computed empirically through the auxiliary regression described in Section 2.5.1.

If one wants to preserve the variance-weighting scheme of the baseline specification
without covariates, or to avoid other possible drawbacks from the inclusion of covariates
in linear regression in the DiD setting (discussed by Sant’Anna and Zhao, 2020), it is easy
to control for covariates semi-parametrically using propensity-score based methods in the
spirit of Sant’Anna and Zhao (2020). Moreover, an equally-weighted average effect can
still be estimated by using regression adjustment, as described in Section 2.5.1. Jorda and
Taylor (2016) discuss the implementation of propensity-score based and doubly-robust
methods in the LP setting and apply them to estimate the effects of fiscal consolidation.

When the specification includes lags of the outcome, Nickell (1981) bias can arise
from the presence of y;; , both as a regressor and in the error term, which is equal to
€ t+k —€; 1—1- However, two conditions must both be met for this bias to be problematic.
First, the autoregressive coefficient on the lagged outcome variable must be high. Second,
the time dimension of the dataset must be relatively small. If either of these two conditions
fails, the bias is negligible as Alvarez and Arellano (2003) show. In applications in which
‘Nickell bias” is a concern, the researcher can nevertheless correct for it by using a simple
split-sample correction, following Chen, Chernozhukov, and Fernandez-Val (2019).

3.2 Non-absorbing treatment

In many applications, treatment is not absorbing: units can enter and exit treatment

multiple times. The LP-DiD framework offers flexibility to accommodate the different

9Formally, conditional versions of Assumptions 1 and 2 can be written as follows:
Assumption 3. Conditional no anticipation
E [vit(p) = Yit(0)| AYi 41, oo AY; pk; Xit | = 0, for all p and t such that ¢ < p.
Assumption 4. Conditional parallel trends

E [Yit(0) = Yiz (0) | AYi t—g, -vves AYj 4 Xits Pi = P| = E [Yit(0) = Yi1 (0) | AYj 4y, oooe) AYi 4k Xit] 5
forallt € {2,..,T} and for all p € {1, .., T, 0}.
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definitions of the causal effect of interest and the different identification assumptions that
might be appropriate under non-absorbing treatment.

An appropriate modification of the ‘clean control” approach of Equation 10 will gener-
ally be necessary to implement LP-DiD in this setting. One can recover, for example, the
effect of entering treatment for the first time and staying treated, relative to a counterfac-
tual of remaining untreated, by using the LP-DiD specification of Equation 10 but then

modifying the ‘clean control” sample restriction as follows,

treatment (Djtsj=1foro<j<h)and (D;;j=oforj=>1), (16)
1

or clean control ~ D;; j=oforj>-h.

However, in numerous settings of practical importance the ‘clean control” condition in
Equation 16 might not be feasible or appropriate. Consider, for example, the problem
of estimating the effect of minimum wage increases in a panel of regions. For later time
periods t, there will be very few regions that have never experienced a minimum wage
increase until period t + h. This case can be dealt with in a simple way in the LP-DiD
framework, under the additional assumption that dynamic treatment effects stabilize
after a finite number of periods.

Formally, we introduce the following assumption.

Assumption 5. Dynamic effects stabilize after L periods:

o

7, forl>o,andall groupsg=1,..G.

Assumption 5 implies that, for any time horizon h and for any j > L+ 1, we have
Tf: e Tﬁ e Therefore, under Assumptions 1, 2 and 5, Equation 9 becomes
EIBP1 = E(X€ [ < 1{t =pg}| [AD; = 1)
-E Zg“ Z"]'Lzl (T§+j_Tjg—1) X ADi,t—j x 1{t = Pg +]})} |ADjy = 0)
—E (X5 Z}LI Tf_]- X ADj i x 1{t = pg —f})} |AD;; = 0)
(17)

Equation 17 implies that bias only comes from observations that experience a change in
treatment status between time t—L and -1 or between t + 1 and ¢ + h.

A convex weighted ATT for the effect of entering treatment and staying treated is then
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obtained by estimating an LP specification with the following sample restriction:

treatment (Djtyj=1foro<j<h)and (Dj; j=ofor1<j<1L), (18)
1

or clean control ~ AD;; j=ofor —h <j<L.

For example, if the effect of treatment is assumed to stabilize after 15 periods (L=15), then
one only needs to exclude from the estimation sample observations that experience a
change in treatment status between f—15 and t—1 or between t + 1 and ¢ + h.2°

Later, in Section 5.2, we illustrate the use of LP-DiD under non-absorbing treatment in

an empirical application which estimates the effect of democracy on economic growth.

3.3 Continuous treatment

A detailed formal discussion of the issues that can arise under continuous treatment is
outside the scope of this paper (see for example de Chaisemartin et al. 2022). However, it
is clear that the LP-DiD framework also offers flexibility to accommodate the different
definitions of the causal effect of interest and the different identification assumptions that
might be appropriate with continuous treatment. For example, the clean control condition
can be adapted to define clean controls as ‘stayers’ (or alternatively ‘quasi-stayers’), in the
terminology of de Chaisemartin et al. (2022).

3.4 Identification and relation to impulse responses

Circling back to our initial motivation, we end this discussion by briefly outlining the
differences and commonalities between the LP framework for applied microeconomic
research and the ways LPs are used in macroeconomics.

First, we reiterate the identification assumptions behind LP-DiD (and the DiD literature
in general). As Ghanem, Sant’Anna, and Wiithrich (2022) show, as long as selection into
treatment is driven by static covariates or covariates that change over time randomly (so
that they are unpredictable), then we can rely on the no-anticipation and parallel trends
assumptions to eliminate selection bias. When identification further requires conditioning

on covariates (especially in dynamic settings where the parallel trends assumption may

29In their empirical application, Callaway and Sant’Anna (2020) study the impact of minimum wage
increases during 2001-2007, and use as controls all states that did not raise their minimum wage during
this period. However, all states (including the control states) were affected by the federal minimum wage
increases in 1996-1997, and there were no truly untreated states during the 2001—2007 period. Therefore,
there is an assumption in Callaway and Sant’Anna (2020) that L is no greater than 4 years, although this
assumption is not made explicit.
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only hold conditionally), these assumptions can be made conditionally, as the literature
has shown. In practice, we expect that these should be the default assumptions.

We think it is helpful to compare the LP-DiD methods that we propose in this paper
and the now-typical estimation of impulse responses by LPs in macroeconomics. Perhaps
the key difference is in the definition of the counterfactual experiment. In a traditional
macro impulse response, treatment (the ‘shock” in macro parlance), typically generates a
series of later changes in the policy variable itself (i.e., subsequent treatments) as well as
changes in the outcome. In a sense, the experiment is akin to a treatment plan rather than
a one-off treatment, as is traditional in applied micro.

Note that in the specification of the LP-DiD estimator, we condition on future values
of treatment (between f + 1 and t + ). This removes the effect of subsequent treatment
effects on future values of the outcome. It should be obvious that one can recover the
impulse response by the convolution of the treatment plan with the single-treatment effect
measured with the LP-DiD estimator. That is, our estimator computes the treatment effect
of a one-off intervention. If the intervention itself then generates subsequent interventions,
the overall effect—the impulse response—is the result of combining one-off treatment
effects with the treatment plan itself.

Is one approach more correct than the other? As Alloza, Gonzalo, and Sanz (2019)
show, not really. The impulse response captures the effect of an intervention on an
outcome that is the most likely to be seen directly in the data, allowing for the path
of future treatments. The researcher is less interested in the sequence of individual
treatment effects on the outcome generated by the treatment plan. Rather the goal is
to understand the overall effect on the outcome over time. In the applied-micro setting
for which our LP-DiD estimator is constructed, we are instead careful to parse out the
one-off effect. This object is of equal value scientifically as it would permit the researcher
to craft an alternative treatment plan than that usually observed (though in that case,
deviations from the usual treatment plan can run afoul of the Lucas critique if they are
‘too different’).

There are two important caveats to these statements. First, conditioning on future
treatments is not innocuous if treatment assignment is endogenous, in which case, an
instrumental variable approach would be advisable. Second, even if treatments are
exogenous (perhaps conditional on observables), the extent to which the results can be
interpreted as measures of one-off treatments when treatment is not absorbing greatly
depends on how agents form expectations about future treatments. A one-off treatment
will likely be a significant departure from previously observed treatment plans and thus
lead forward-looking agents to respond differently.
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4 Simulations

In this section, we conduct two Monte Carlo simulations to evaluate the performance
of the LP-DiD estimator. We consider a binary staggered treatment, with dynamic
and heterogeneous treatment effects. In the first simulation, treatment is exogenous;
the parallel trends assumption holds and the conventional TWFE model only fails
because of heterogeneous dynamic effects, which lead to negative weighting (as discussed
in Section 2.5). In the second simulation, treatment is endogenous; specifically, the
probability of receiving treatment depends on previous outcome dynamics. We compare
the performance of LP-DiD with a conventional event-study TWEFE specification and
other recently proposed estimators.

Results suggest that, unlike the conventional TWFE specification, LP-DiD tracks well
the true effect path even in the presence of heterogeneity. With exogenous treatment, LP-
DiD performs in a way similar to the Sun and Abraham (2020), Callaway and Sant’Anna
(2020) and Borusyak, Jaravel, and Spiess (2021) estimators. When the probability of
treatment depends on lagged outcome dynamics, the ability of LP-DiD to match on

pre-treatment outcomes makes it outperform other estimators.

4.1 Setting

Our simulated datasets include N = 500 units, observed for T = 50 time periods. The

counterfactual outcome y;;(0) that a unit would experience if not treated is given by

Yit(0) = py; 11 (0) + Aj + Yyt + €y,

with p = 0.5, and with A;, ¥4, €;; ~ N(o, 25).
Treatment is binary and staggered and treatment is an absorbing state. The treatment
effect is positive and grows in time for 20 time periods, after which it stabilizes. Moreover,

early adopters have larger treatment effects. Specifically, the treatment effect is given by

o ift-p; <o,
t—p;+1)? .
Bit=1q aolt—pi+1)+as(t-p;+1)*+ (I—wl)((pf/;:))z ifo<t-p; <20,
K021 + 7212 + (1—0(1)% if t—p; > 20,

where p; is the period in which unit i enters treatment as in the previous sections and py

is the treatment period for the ‘earliest adopter” in the sample. We set # = 2 and & = 0.5.
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Observed outcomes y;; are therefore given by
Yit = Yir(0) + Bi -

Simulation 1: Exogenous treatment timing In simulation 1, we assume that treatment
is exogenous. Specifically, units are randomly assigned to 10 groups, each of size N/1o0.
One group never receives treatment; the other nine groups receive treatment respectively

at time p = 11,13,15...,27.

Simulation 2: Endogenous treatment timing In simulation 2, treatment timing is
endogenous: the probability of receiving treatment depends on past outcome dynamics.

Specifically, unit i enters treatment in the first period that satisfies that following condition:
PAY;+(1-¢Pu; <0 and 11 <t < 30,

with ¢ = 0.6, u; ~ N(o0,25) and 6 = -0, ;). The probability of entering treatment
is therefore higher for untreated units that experience a large negative change in the

outcome variable.

4.2 Results

We perform 200 replications of each of the two simulations and evaluate five estimators:

* A conventional event-study TWFE specification with leads and lags of the treatment

indicator (Equation 4).

¢ The LP-DiD estimator (Equation 10), using both simple (variance-weighted) LP-DiD
and re-weighted LP-DiD, and applying both first-lag differencing and pre-mean
differencing.?*

¢ The Sun and Abraham (2020) estimator (SA hereafter).
¢ The Callaway and Sant’Anna (2020) estimator (CS hereafter).

* The Borusyak, Jaravel, and Spiess (2021) estimator (BJS hereafter).

21As discussed in Section 2.5.1, the variance-weighted version identifies a convex combination of all
group specific effects, with weights given by Equation 11 and Equation 12. The re-weighted version
identifies an equally-weighted ATT; it can be implemented through a weighted least squares regression or
using regression adjustment. See Section 2.5.3 for the discussion of first-lag differencing versus pre-mean
differencing.
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Table 1: Simulation 1: Exogenous treatment scenario: Root mean squared error (RMSE)

Event ES LP-DiD Rw PMD Rw SA CS BJS
time TWEFE LP-DiD LP-DiD PMD
LP-DiD

-5 10.83 2.05 2.11 1.31 1.35 2.17 1.61 1.54
-4 7.54 1.90 1.97 1.33 1.37 2.19 1.51 1.63
-3 5.70 1.93 1.95 1.47 1.52 1.83 1.54 1.92
-2 3.50 1.79 1.81 1.60 1.62 1.96 1.60 2.08
0 4.86 1.48 1.46 1.58 1.59 1.70 1.46 1.59
1 5.80 1.83 1.85 1.55 1.58 1.68 1.85 1.58
2 10.27 2.09 2.14 1.63 1.68 2.18 2.14 1.67
3 11.22 2.40 2.41 1.89 1.89 2.25 2.41 1.89
4 15.68 2.39 2.36 2.04 1.99 2.42 2.36 1.98
5 17.03 2.47 2.33 2.14 2.00 2.14 2.33 1.99
6 21.22 2.67 2.38 2.33 2.07 2.39 2.38 2.04
7 23.60 2.90 2.45 2.57 2.12 2.37 2.45 2.09
8 27.19 3.12 2.31 2.85 1.98 2.36 2.31 1.92
9 30.65 3.56 2.51 3.28 2.14 2.41 2.51 2.10
10 33.50 3.79 2.57 3.53 2.25 2.62 2.57 2.18

Notes: RMSE from 200 replications. ES TWFE = event-study two-way-fixed-effects; Rw = reweighted; PMD
= pre-mean-differenced; CS = Callaway and Sant’Anna (2020); SA = Sun and Abraham (2020); BJS =
Borusyak et al. (2021).

For each estimator, we compare the distribution of the estimated ATE with the
(equally-weighted) true ATE.

4.2.1 Results of Simulation 1: Exogenous treatment scenario

Results from Simulation 1, with exogenous treatment timing, are presented in Figures 1
and 2 and Tables 1 and 2.

Figure 1 displays the estimated effect path in comparison with the true (equally-
weighted) average effect path and the full range of heterogeneous group-specific effects.
Figure 2 plots the full distribution of the estimates at time-horizons o,5,10 and —2. Tables
1 and 2 report the root mean squared error (RMSE) and the empirical standard error of
each estimator at time horizons between —5 and +10.

The conventional event-study TWFE specification does a poor job in our setting, due
to the heterogeneity of treatment effects. It finds a non-existent decreasing pre-trend, and

it grossly underestimates the dynamic treatment effect. Due to negative weighting, point
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Figure 2: Simulation 1: Exogenous treatment scenario: Distribution of estimates
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Notes: Distribution of estimates from 200 replications. The black vertical dashed line is the true (equally-
weighted) average treatment effect on the treated. The Callaway and Sant’Anna (2020) estimator is not
included, because in this setting it is numerically equivalent to Reweighted LP-DiD.

estimates lie outside the full range of true group-specific effects.**

Our LP-DiD estimator, instead, tracks well the average true effect. This is true of
both simple (variance-weighted) LP-DiD and re-weighted LP-DiD. As expected, there is
a bias-variance trade-off between the two. The variance-weighted version has a slightly
smaller empirical standard error (Table 2), but also a small bias due to differences between
the variance-weighted and equally-weighted ATTs (Figure 1 and Figure 2). This bias
tends to become more relevant at longer time-horizons, because in our simulation the
true treatment effect variance increases in time after treatment.

Overall, variance-weighted LP-DiD has smaller RMSE than re-weighted LP-DiD at
short time-horizons, but the opposite is true at longer time horizons (Table 1). Pre-mean-
differencing (PMD) has a lower RMSE than first-lag differencing, as expected in a setting

*2The fact that in our simulated DGP the size of the effect is a function of the date of treatment makes the
negative weighting’ problem particularly severe, and therefore the performance of the TWFE specification
particularly poor. We choose this DGP in order to test the performance of our estimator in a setting in
which the flaws of the conventional estimator are particularly severe.

1
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Table 2: Simulation 1: Exogenous treatment scenario: Empirical standard errors

Event ES LP-DiD Rw PMD Rw SA CS BJS
time TWEFE LP-DiD LP-DiD PMD
LP-DiD

-5 5.07 2.06 2.11 1.31 1.34 2.18 1.61 1.54
-4 5.12 1.89 1.97 1.33 1.37 2.17 1.50 1.63
-3 3.35 1.93 1.96 1.48 1.52 1.83 1.54 1.93
-2 3.49 1.79 1.80 1.60 1.62 1.94 1.60 2.08
0 2.61 1.48 1.46 1.58 1.59 1.68 1.46 1.59
1 2.89 1.83 1.85 1.55 1.58 1.68 1.85 1.58
2 3.39 2.09 2.13 1.63 1.65 2.18 2.13 1.64
3 3.43 2.39 2.41 1.88 1.90 2.25 2.41 1.89
4 3.53 2.35 2.36 2.01 1.99 2.42 2.36 1.98
5 3.25 2.32 2.33 2.00 2.01 2.14 2.33 1.99
6 3.76 2.40 2.38 2.07 2.07 2.39 2.38 2.04
7 3.76 2.39 2.45 2.06 2.13 2.38 2.45 2.09
8 4.14 2.25 2.32 1.94 1.98 2.37 2.32 1.93
9 3.94 2.42 2.52 2.07 2.15 2.41 2.52 2.10
10 4.22 2.53 2.57 2.18 2.25 2.63 2.57 2.18

Notes: Empirical standard errors from 200 replications. ES TWFE = event-study two-way-fixed-effects; Rw
= reweighted; PMD = pre-mean-differenced; CS = Callaway and Sant’Anna (2020); SA = Sun and Abraham
(2020); BJS = Borusyak et al. (2021).

in which parallel trends holds fully and at all time periods (see the discussion in Section
2.5.3).

In this exogenous treatment setting, also the SA, CS and BJS estimators perform very
well. Overall, LP-DiD performs similarly to these (computationally more demanding)
estimators. In particular, the reweighted and pre-mean-differenced version of LP-DiD
outperforms CS and SA and is very close to BJS. BJS has slightly lower RMSE than
reweighted PMD LP-DiD at longer post-treatment time horizons, but the reverse applies

to testing for pre-trends (i.e., pre-treatment time horizons). 23

23 As discussed in Section 2, in this setting with binary absorbing treatment, no covariates, and using
only not-yet treated observations as controls, the re-weighted LP-DiD estimator with first-lag differencing
is numerically equivalent to the CS estimator, and therefore has exactly the same RMSE and empirical
standard error. This holds at all post-treatment time-horizons (& > o), but not in the estimation of pre-trends
(h < o) because pre-trends tests are constructed differently by the CS estimator. As discussed in Section
2.5.3, reweighted PMD LP-DiD would be numerically equivalent to BJS in the special case of only one
treated group, and is very similar in more general settings. The fact that in this simulation reweighted PMD
LP-DiD has lower RMSE than BJS at pre-treatment time periods is not inconsistent with BJS’s demostration
of efficiency, because that demostration assumes no autocorrelation, while in this simulation there is some
autocorrelation.
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Table 3: Simulation 2: Endogenous treatment scenario: Root mean squared error (RMSE)

Event ES LP-DiD Rw PMD Rw SA CS BJS
time TWEFE LP-DiD  LP-DiD PMD
LP-DiD

-5 30.66 2.12 2.18 1.70 1.73 25.29 2.29 3.38
-4 31.43 2.05 2.09 1.69 1.78 28.41 3.46 6.20
-3 35.00 1.57 1.60 1.52 1.63 34.36 5.99 12.09
0 10.13 1.71 1.72 1.73 1.78 11.28 12.11 13.63
1 13.77 2.24 2.35 2.13 2.19 16.52 16.59 8.44
2 14.78 2.53 2.61 2.04 2.07 19.40 18.61 6.00
3 14.19 2.76 2.75 2.18 2.17 20.60 19.77 4.76
4 13.47 2.63 2.58 2.19 2.16 21.27 20.54 3.99
5 12.15 2.94 2.76 2.33 2.12 21.58 20.74 3.82
6 10.48 3.27 3.06 2.68 2.44 21.64 20.75 4.09
7 9.14 3.36 3.04 2.89 2.47 21.73 20.93 3.94
8 8.58 3.73 3.12 3.24 2.43 21.67 20.9 3.93
9 10.03 3.95 3.00 3.60 2.50 21.67 20.98 3.87
10 13.18 4.24 3.09 3.92 2.61 21.57 21.18 3.85

Notes: RMSE from 200 replications. ES TWFE = event-study two-way-fixed-effects; Rw = reweighted; PMD
= pre-mean-differenced; CS = Callaway and Sant’Anna (2020); SA = Sun and Abraham (2020); BJS =
Borusyak et al. (2021).

4.2.2 Results of Simulation 2: Endogenous treatment scenario

Results from the simulation with endogenous treatment timing (Simulation 2) are reported
in Figures 3 and 4 and Tables 3 and 4.

In applying our LP-DiD estimator in this setting, we include one lag of the change in
the outcome variable as a control. This warrants some discussion in comparison to other
estimators. While the SA, CS and BJS estimators do allow the inclusion of time-invariant,
and in some cases time-varying, control variables, there is no straightforward way to
control for pre-treatment lags of the outcome (or of other time-varying covariates) in their
specifications.

LP-DiD outperforms other estimators in the presence of this particular failure of
the parallel-trends assumption, due to its ability to match on pre-treatment outcome
dynamics. Indeed, the LP-DiD estimator tracks quite well the true dynamic effect also
in this second simulation (Figure 3) and it has the lowest RMSE (Table 3). The SA, CS
and BJS estimators are biased in this setting in which selection into treatment is based on

lagged outcome dynamics.
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Figure 4: Simulation 2: Endogenous treatment scenario: Distribution of estimates
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Notes: Distribution of estimates from 200 replications. The black vertical dashed line is the true (equally-
weighted) average treatment effect on the treated. To filter out variation in estimates due to variation in
the true treatment effect across replications, we subtract from each estimate the true effect, and then add
back the average true effect across all replications. This adjustment is in order because in the ‘endogenous
treatment’ setting, the average treatment effect is not deterministic.

Also in this endogenous treatment setting, there is a bias-variance tradeoff between
simple (variance-weighted) LP-DiD and reweighted DiD. Reweighted LP-DiD is unbiased,
while variance-weighted LP-DiD has a small bias but also smaller variance. Overall, the
two versions of LP-DiD perform similarly in this setting in terms of RMSE.

4.3 Computational speed

We also find that our LP-DiD estimator provides a substantial computational advantage
relative to other recently proposed estimators. To quantify this, we recorded the computa-
tion time required for estimating the treatment effect path in our synthetic datasets. For
these exercises, the estimations were conducted using STATA software on a laptop with
2.80 GHz Quad-core Intel i7 Processor and 16 GB of RAM. Recorded computation times

are reported in Table 5.
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Table 4: Simulation 2: Endogenous treatment scenario: Empirical standard errors

Event ES LP-DiD Rw PMD Rw SA CS BJS
time TWEFE LP-DiD LP-DiD PMD
LP-DiD

-5 8.25 2.11 2.18 1.68 1.72 2.96 1.81 1.93
-4 6.15 2.05 2.09 1.66 1.74 2.86 1.76 1.94
-3 6.12 1.57 1.60 1.48 1.59 2.87 1.80 1.91
0 4.79 1.67 1.67 1.62 1.67 2.32 1.87 1.78
1 6.04 2.23 2.35 2.14 2.19 2.97 2.51 2.14
2 6.24 2.34 2.47 2.11 2.17 2.92 2.74 2.15
3 6.05 2.61 2.70 2.38 2.45 3.15 2.82 2.37
4 6.33 2.58 2.77 2.43 2.61 3.12 2.89 2.58
5 6.57 2.95 3.24 2.69 2.97 3.38 3.24 2.92
6 6.69 3.61 4.10 3.40 3.89 4.04 3.95 3.83
7 6.65 4.06 4.79 3.86 4.55 4.62 4-49 4-45
8 6.68 4.36 5.34 4.18 5.10 5.29 5.07 5.16
9 6.68 4.96 6.24 4.86 6.08 6.24 5.85 6.12
10 7-38 5.74 7-49 5.64 7-30 6.87 7-10 7-35

Notes: Empirical standard errors from 200 replications. ES TWFE = event-study two-way-fixed-effects; Rw
= reweighted; PMD = pre-mean-differenced; CS = Callaway and Sant’Anna (2020); SA = Sun and Abraham
(2020); BJS = Borusyak, Jaravel, and Spiess (2021).

Table 5: Computational speed (seconds)

Simulation 1 (exogenous treatment scenario)

ES PMD Rw Rw PMD
TWEFE LP-DiD LP-DiD LP-DiD LP-DiD CS SA BJS
.59 .74 .80 1.59 1.64 79.25 177.71 7.08
Simulation 2 (endogenous treatment scenario)
ES PMD Rw Rw PMD
TWEFE LP-DiD LP-DiD LP-DiD LP-DiD CS SA BJS
.61 .74 .82 16.27 19.03 177.5 902.78 7.48

Notes: Computation times in a single repetition of the simulated datasets described in Section 4, measured
in seconds. Recorded on a laptop with 2.80 GHz Quad-core Intel i7 Processor and 16 GB of RAM, using the
STATA software. Rw = reweighted (see Sec 2.5.2); PMD = pre-mean-differenced (see Sec 2.5.3); CS =

Callaway and Sant’Anna (2020); SA = Sun and Abraham (2020); BJS = Borusyak, Jaravel, and Spiess (2021).
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In the synthetic dataset with exogenous treatment timing, the LP-DiD estimator
runs in 0.7 seconds per repetition, similar to the (biased) event-study TWFE estimator,
while reweighted LP-DiD (implemented through weighted regression) requires around
1.6 seconds. The BJS estimator requires approximately 7 seconds with the CS and SA
demanding respectively 79 and 178 seconds. With endogenous treatment timing, LP-
DiD runs in around 0.7 seconds and re-weighted LP-DiD in around 16 seconds, while
the BJS estimator requires approximately 7.5 seconds. The CS and SA estimators are
computationally demanding: they require respectively 178 and 9o3 seconds.*#

5 Empirical Applications

To illustrate the use of the LP-DiD estimator in practice, we present two empirical ap-
plications. In the first, we use the LP-DiD estimator to estimate the effect of banking
deregulation laws on the labor share in US States, replicating Leblebicioglu and Wein-
berger (2020). In the second, we replicate the Acemoglu, Naidu, Restrepo, and Robinson

(2019) country-panel study of the effect of democracy on economic growth.

5.1 Credit and the labor share

In our first empirical study, we replicate the Leblebicioglu and Weinberger (2020) analysis
of the effect of banking deregulation on the labor share in US states.

From the late 1970s up to the 1990s, U.S. states lifted restrictions on the ability of
out-of-state banks to operate in-state (interstate banking deregulation) and on the ability
of in-state banks to open new branches (intra-state branching deregulation). Leblebicioglu
and Weinberger (2020) estimate the effects of both inter-state and intra-state banking
deregulation laws on the labor share of value added. They find inter-state banking
deregulation had a sizable negative effect on the labor share, but find no effect of intra-
state branching deregulation.

The dataset covers the 1970-1996 period. (In 1997, inter-state banking deregulation was
imposed in all states by federal law.) Figure 5, which reproduces Figure 1 in Leblebicioglu

and Weinberger (2020), displays the share of US states with a liberalized banking sector.

24CS and SA are more computationally demanding in the simulation with endogenous treatment timing
relative to the one with exogenous treatment because by construction there is a larger number of treatment
cohorts. Reweighted LP-DiD is relatively slower in the simulation with endogenous treatment timing than
under exogenous treatment because of the presence of covariates. Indeed with control variables other
than time effects, reweighted LP-DiD needs to be implemented using regression adjustment, while in the
absence of control variables it can be implemented using a (computationally faster) weighted least squares
regression (as discussed in Section 2.5.1).
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5.1.1 Conventional TWFE specifications

As a starting point, we consider the following static TWFE specification for the effect
of banking deregulation laws, which replicates Leblebicioglu and Weinberger (2020)’s
baseline specification:

LSst = BpaniBankst + BprancnBranchsy + nXge + as + oy + €54, (19)

where s indexes states, t indexes years, and LS is the labor share. Branchg; and Bankg are
binary indicators equal to one if a state has adopted intrastate branching or interstate
banking deregulation.

To assess possible pre-trends and lagged effects, Leblebicioglu and Weinberger (2020)
also estimate the following event-study TWFE specification:*>

9 9
LSg = Z ,BBank,t+qABa”ks,t+q + Z 5anch,t+qABm”Chs,t+q + Xt + s+t + €. (20)
g=-9 9=-9

5.1.2 Forbidden comparisons in the TWFE specifications

Given the staggered rollout of banking deregulation laws across US states, the TWFE
specifications of Equation 19 and Equation 20 suffer from the issues highlighted by recent
studies (Goodman-Bacon, 2021; de Chaisemartin and D’Haultfceuille, 2020). Earlier liber-
alizers are used as controls for states that liberalize later on. Specifically, the specifications
in Equation 19 and Equation 20 produce a weighted average of two types of comparisons:
(1) newly treated states vs. not-yet treated states and (2) newly treated states vs. earlier
treated states (Goodman-Bacon, 2021).

We employ the Goodman-Bacon (2021) diagnostic to decompose the TWFE estimate
from Equation 19 into these two types of comparisons. While “unclean” 2x2 comparisons
with earlier treated units as controls contribute to (and potentially bias) the TWFE
estimates of both the policies studied, the estimates of the effect of intrastate branching

deregulation are affected most severely. The static TWFE estimator of the effect of

?5The event-study TWEFE specification employed by Leblebicioglu and Weinberger (2020) is not completely
standard, since it includes only leads and lags of the differenced treatment indicators but not a last lag in
levels. Therefore it is not completely equivalent to the standard event-study TWFE estimator as obtained
by estimating equation 4 above. This non-standard specification, however, does not influence results:
applying a standard event-study TWFE specification (as in our equation 4) yields very similar results as
those obtained by Leblebicioglu and Weinberger (2020). This reassures us that any differences between the
dynamic TWEFE results of Leblebicioglu and Weinberger (2020) and our results from applying LP-DiD are
due to the negative weights bias of TWFE, not to the non-standard specification of the TWFE model used
by Leblebicioglu and Weinberger (2020).
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Figure 5: Banking deregulation in US States
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Notes: Data from Leblebicioglu and Weinberger (2020).

interstate banking deregulations assigns a overall weight of 63% to ‘clean” comparisons of
earlier treated versus not-yet treated states, and 36% to “unclean’ comparisons that use
earlier treated units as controls. For the estimates of the effect of intrastate branching
deregulations, the problem is much more severe: ‘clean” comparisons receive a weight
of only 30%. The remaining 70% is accounted for by two types of unclean comparisons:
later treated units versus earlier treated units (23%) and treated units versus units that
are already treated in the first period of the panel (47%).

Figure 6 displays the results of the Goodman-Bacon (2021) decomposition diagnostic.
The figure plots each constituent 2x2 comparison that contributes to the static TWFE
estimates of Equation 19, with its weight on the horizontal axis and its estimate on
the vertical axis. The graph suggests that the estimates of the effects of branching
deregulations are driven by a few ‘unclean” comparisons — those involving states that
deregulated before 1970 — that receive a very large weight. Notably, for both types
of policies, clean comparisons produce overwhelmingly negative coefficients, while
the unclean ones tend to bias the coefficients upwards. The greater bias in the case
of intrastate branching—whose adoption is spread over a much longer horizon than
interstate banking—is a stark demonstration of the negative weighting problem that arises

with staggered treatment.
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Figure 6: Goodman-Bacon (2021) decomposition diagnostic for the static TWFE specifica-
tion of equation 19
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Figure 7: Effect of banking deregulation on the labor share: static TWFE estimates
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Notes: Estimates for the effect of banking deregulation on the labor share, using data from Leblebicioglu
and Weinberger (2020) and the static TWFE specification of equation 19. This graph replicates results from
Leblebicioglu and Weinberger (2020).

5.1.3 LP-DiD specification

In order to avoid the biases of the conventional TWFE specifications, and to allow for
matching based on pre-treatment outcome dynamics, we re-estimate the effect of banking

deregulation laws using the following LP-DiD specification:2®

, M M
LS sip—LSst— = "‘? + ﬁ%P ~DiD ABanks ; + ) 'y},ilALSS,t_m +) WilnXs,t—m + e?,t , (21)

m=1 m=1

restricting the sample to observation that are either:

treatment ABankg; =1,
' (22)

control Bankg s =o0.
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5.1.4 Results

We begin by presenting some replication results where we follow the design of the
original study. Figure 7 displays results from the static TWFE specification of Equation 19,
while Figure 8 displays results from the event-study TWFE specification of Equation 20.
Figure 9, instead, displays results from the LP-DiD estimator with clean controls.

The two sets of TWEFE results shown replicate the estimates reported in Table 2 and
Figure 2 of Leblebicioglu and Weinberger (2020). They suggest that the liberalization of
inter-state banking has a sizable negative effect on the labor share, although they also
show a small pre-treatment trend. Instead, the estimated effects of intra-state branching
deregulation on the labor share are positive, small and very imprecise.

Next consider the LP-DiD estimator with clean controls in Figure 9 . The negative
effect of inter-state banking deregulation on the labor share is confirmed, including when
controlling for pre-treatment outcome dynamics. Estimates of the effect of intra-state
branching deregulation, instead, change dramatically: while the original TWFE estimates
found no effect, we find a sizable negative impact.

Finally, we can sum up the lessons of this empirical exercise. The results here are
not weaker, and in some respects are even stronger, than in the original study. After
addressing the downward bias of the TWFE estimator by excluding “unclean” comparisons,
the estimated effect of inter-state branching deregulation on the labor share is negative
and of similar size as that of inter-state banking deregulation. Both types of deregulation
are now found to make a difference.

5.2 Democracy and economic growth

Our second empirical application estimates the effect of democracy on GDP per capita,
replicating the analysis in Acemoglu, Naidu, Restrepo, and Robinson (2019), ANRR
hereafter.

The dataset covers 175 countries from 1960 to 2010. The treatment indicator is a binary
measure of democracy, which ANRR build from several datasets to mitigate measurement
error. The main outcome variable of interest is the log of GDP per capita, obtained from
the World Bank Development Indicators.

Three features make this application an especially meaningful testing ground for
the LP-DiD approach. First, there is potential for negative weighting: fixed-effects

26Given that treatment is absorbing in this data, and there is a sufficient number of not-yet treated States
at all points in time, we employ the version of the clean control condition which uses only untreated units
as controls.
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Figure 8: Effect of banking deregulation on the labor share: event-study TWFE estimates
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Notes: Estimates for the effect of banking deregulation on the labor share, using data from Leblebicioglu
and Weinberger (2020) and the event-study TWFE specification of equation 20. This graph replicates results
from Leblebicioglu and Weinberger (2020).
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Figure 9: Effect of banking deregulation on the labor share: LP-DiD Estimates with clean
controls
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and Weinberger (2020) and the LP-DiD specification of equations 21 and 22. The additional controls are
four lags of real State GDP, average corporate tax rate, and union membership rates.
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regression would implicitly use older democracies as controls for new democracies.
Second, treatment is non-absorbing: democracies can slide back into autocracy, and there
are indeed multiple instances of reversals in the data. Third, controlling for pre-treatment
outcome dynamics is crucial, since there is evidence of selection: ANRR show that
democratisation tends to be preceded by a dip in GDP per capita.

5.2.1 Dynamic panel specifications

The baseline results in ANRR are obtained from the following dynamic fixed effects
specification:
p
Yet = BDet + Y VYej + e + O + Ect, (23)
j=1
where ¢ indexes countries, t indexes years, y is the log of GDP per capita and D is the
binary measure of democracy.

Lags of GDP per capita are included to address selection bias, and in particular the
pre-democratization decline in GDP per capita.

The estimated coefficients from Equation 23 are then used to build an impulse response
function (IRF) for the dynamic effect on GDP. These estimates also allow one to derive
the cumulative long-run effect of a permanent transition to democracy, which can be
estimated as B(1 - 2}1 L '?j)‘l.

Figure 10 displays the IRF from the estimation of the dynamic panel model of Equa-
tion 23. This reproduces the baseline results in ANRR. The implied long-run effect of
democracy on growth is 21 percent with a standard error of 7 percent.

This dynamic fixed effects specification, however, might suffer from bias if treatment
effects are dynamic and heterogeneous, as highlighted in the recent literature.

5.2.2 LP-DiD specifications
Consider an LP-DiD specification for estimating the effect of democracy on growth,
LP DiD h & h h
Yetsh —Yet-1 = ‘Bh ADct +0p + Z ’)’]‘ Yot €cts (24)
j=1

restricting the estimation sample to:

democratizations ~ Dj =1;D;; j=ofor1 <j <L, (25)
7 25
clean controls Djsj=oforo<j<L.
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Figure 10: Effect of democracy on growth: dynamic panel estimates

30

20

10

GDP per capita (log x100)

0 5 10 15 20 25 30
Years since democratization

Notes: Extrapolated impulse response function for the effect of democracy on GDP per capita, using the
dataset of Acemoglu et al. (2019) and the dynamic fixed effects specification of Equation 23. This graph
replicates the baseline results from Acemoglu et al. (20109).

In words, in each year t treated units are countries that democratize at t and have
experienced no other change in treatment status in the previous L years; clean controls
are countries that have been non-democracies continually for at least L years.

This is an example of how the LP-DiD framework can be applied in a setting in which
treatment is not absorbing, and the clean control condition can (and should) be tailored
to the specific application. For example, this specification does not condition inclusion in
the estimation sample on treatment status between time t + 1 and t + h. This is to take into
account the concern that, under endogenous selection into treatment, constraining future
treatment status might introduce bias (see ANRR, pp. 54-55, for a discussion).

Moreover, similar to ANRR, only non-democracies are included in the control group,
although in principle under Assumption 5 also countries that are continually democracies
from t-L to t could be included. This reflects the concern that established democracies
might not be a good control group for new democracies, therefore a control group
composed only of continuing autocracies is more likely to satisfy the parallel trends
assumption.

In one section of their analysis, ANRR employ a semiparametric LP specification that
can be seen as a special version of the LP-DiD estimator above. Specifically, they estimate
Equations 24—25 with L = 1, meaning that their time-window for defining clean controls
is just 1 year.

Seeing ANRR’s semiparametric specification as a version of LP-DiD provides a useful
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novel perspective on their analysis and suggests possible deviations from their specifica-
tion. Our formal analysis in Section 2 makes clear that their choice relies on an implicit
(and unintended) assumption that treatment effects stabilize after 1 year, which is clearly
too strong in this setting.

For example, consider Argentina, which democratized in 1973 and became a dicta-
torship again in 1976. The ANRR approach means that Argentina contributes to the
counterfactual for measuring the effect of (among others) the 1978 democratization of
Spain. It seems natural to consider an alternative specification that excludes Argentina
from the counterfactual for countries that (like Spain) democratize shortly after 1973-1976,
reflecting the concern that the country might have experienced prolonged dynamic effects
from the 1973-1976 transitions in and out of democracy.

We thus estimate the LP-DiD specification of Equations 24—25 with a time-window
of 20 years (L = 20) for defining clean controls, thus excluding observations that have
experienced some transition in the previous 20 years. This means that Argentina is not
part of the control group for the 1978 democratization of Spain.

We also test robustness to excluding countries that democratize between t + 1 and
t +h from the control group. To do this, we adopt a second version of the clean control
condition, in which treated units are defined as in condition 25 but clean controls are
defined as observations with D;; ; = o for -1 < j < L.

For example, in measuring the effect of the 1978 democratization of Spain on subse-
quent GDP dynamics, ANRR allow Ecuador, which was a nondemocracy in 1977 and
1978 but democratized in 1979, to be part of the control group. Instead, using the above
version of the clean control condition we exclude Ecuador from the control group for the
1978 democratization of Spain. This test, however, should be interpreted with caution: in

this setting conditioning on future treatment status might introduce bias.

5.2.3 Results

Figure 11 displays results from LP-DiD specifications (Equations 24—25). We present four
specifications: The first (top left panel) follows ANRR and sets a time-window of just one
year for defining clean controls (L = 1). The second (top right) uses a time-window of 20
years (L = 20). The third (bottom left) adds the additional requirement that control units
remain non-democracies between t + 1 and t + h. The fourth (bottom right) estimates the
LP-DiD specification using regression adjustment (RA) to obtain an equally-weighted
(rather than a variance-weighted) ATT, as discussed in Section 2.5.1.

Overall, the result of a positive and large effect of democracy on GDP per capita

appears robust to stricter definitions of the control group. The partial exception is
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Figure 11: Effect of democracy on growth: LP-DiD estimates
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Notes: LP-DiD estimates for the effect of democracy on GDP per capita, using the dataset of Acemoglu
et al. (2019) and the specification of Equations 24-25. The top left panel ("ANRR (2019) LP specification’)
replicates the results in Section IV of Acemoglu et al. (2019), which use a LP specification and restrict the
sample to countries that are either democratizing at year t or non-democracies in both t—1 and t. The other
three panels use the LP-DiD estimator with a time horizon for defining clean controls of 20 years (L = 20).
CCC 1 is a clean control condition that defines treated units as countries that democratize in year t and
have experienced no transition between ¢ —20 and f -1, and clean controls as countries that are continually
non-democracies between t —20 and t. CCC 2 defines treated units in the same way, but clean controls are
continually non-democracies between ¢ —20 and ¢ + h. The right bottom panel uses reweighting to obtain an
equally-weighted average effect, adopting CCC 1 as the clean control condition. See main text for more
details.

the specification that excludes countries that democratize between t + 1 and ¢ + I from
the control group, which finds similar positive short- and medium-term effects, but
much smaller and very imprecise long-term effects. However, that specification is to be
interpreted with caution, since constraining treatment status between t and t + h could

introduce a form of selection bias.
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6 Conclusion

We propose a simple, transparent, easy, and fast technique for difference-in-differences
estimation with dynamic heterogeneous treatment effects. Our LP-DiD estimator has
several advantages and provides an encompassing framework, which can be flexibly
adapted to address a variety of settings. It does not suffer from the negative weighting
problem, and indeed can be implemented with any weighting scheme the investigator
desires. Simulations demonstrate the good performance of the LP-DiD estimator and

empirical exercises illustrate its use.
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Appendix
A  Weights of the LP-DiD estimator

This appendix derives the weights assigned to each cohort-specific ATET by the LP-DiD estimator,
tirst in a baseline version without control variables (Equations 11 and 12 in the main text) and
then in more general specifications with control variables.

A.1 Baseline version without control variables
Assumptions about the DGP

Consider the general setup and notation introduced in Section 2.1 in the main text. Treatment
is binary, staggered and absorbing; parallel trends and no anticipation hold unconditionally
(Assumptions 1 and 2); potential outcomes without treatment are determined according to
Equation 2. As in Section 2.5, treatment effects can be dynamic and heterogeneous across
treatment cohorts.

We can write the observed long-difference Ayy; s = y; 145, —Yi -1 as follows,

h h
ApYit =0 + TipenDi prn = Ti g1 Dijp—1 + €54, (A.1)
where 5? = 01, — 0t—1 and ez =€tk —Cif1-

LP-DiD specification

Consider the following LP-DiD specification with clean controls,
Apyir = ‘5? + ,B%P_DZDAD# + GZ , (A.2)

restricting the sample to observations that are either

newly treated ADj =1,
{ y it (A.3)

or clean control D =o0.

ﬁ%P -DiD s the LP-DiD estimate of the dynamic ATET, h periods after entering treatment.

Derivation of the weights

First, we need to define a clean control sample (CCS) for each treatment group. Consider a
treatment group (or cohort) ¢ > o, as defined in Section 2.1. Define the clean control sample (CCS)
for group g at time horizon 1 (denoted as CCS, j,) as the set of observations for time ¢ = pg that
satisfy condition A.3. Therefore CCS,, j, includes the observations at time pg for all units that either
enter treatment at pg or are still untreated at pg +h. In other words, CCS, j, includes observations
at time t = pg for group ¢ and its clean controls.

By definition of groups and CCSs, each observation that satisfies condition A.3 enters into one
and only one CCS. Therefore, the unbalanced panel dataset defined by the clean control condition
in A.3 can always be reordered as a ‘stacked” dataset, in which observations are grouped into
consecutive and non-overlapping CCSs.



Moreover, for any observation {i,t} € CCS, j,, we have AD;; = ADjp, = Djp,. This follows
from the fact that for any {i,t} € CCSq j, we have Dy, = Dipe1=0 by virtue of the clean control
condition.

Define event indicators as a set of G binary variables that identify the CCS that an observation
belongs to. For each treatment group ¢ > o, the corresponding event indicator is equal to 1
if {i,t} € CCSq jy and o otherwise. By definition of treatment groups and CCCs, these event
indicators are fully collinear with time indicators.

By the Frisch-Waugh-Lovell theorem,

Zji1 ):ieCCSj,h {Aﬁ i,PjE (Ahy i*’fﬂ

G y. D?
2]'21 ZzeCCSj,h ADz,pj

E ( IB%P—DiD) _ (A.g)

where Abi,pg is the residual from a regression of AD on time indicators in the sample defined by
condition A.3.
This residualized treament dummy for unit i at time pg is equal to

Licccs,y, ADip, Lieccs,y, Dip, Ng

= HMipg T = Mipg

AD;p, = AD;p, - , (A.5)

Necs,, Nccs,, Necs,,

where NCCSg , is the number of observations belonging to CCS, j, and Ny is the number of
observations belonging to group g. For all observations belonging to the same group g > o, we

haVe ADl/pg = ADg,pg =1- ngh

The first equality in Equation A.5 follows from the full collinearity between time indicators
and event indicators (defined as above); the second and third equalities follow from the definitions
of groups and CCCs.

Given the parallel trends assumption (Assumption 2), we have
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where the weights are given by
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where ng j = Ne/Nees,, is the share of treated units in the CCS, j, subsample; and 1 ¢ j, = Negi/Nees,

is the share of control units in the CCS, , subsample. Recall that Tg was defined in the main text
as the dynamic ATET for group g at time-horizon h (Equation 1).

A.2 Weights with control variables

What are the weights of the LP-DiD estimator in a more general specification that includes
exogenous and pre-determined control variables? If covariates have a linear and homogenous
effect on the outcome, and parallel trends holds conditional on covariates, it is possible to show
that the weights assigned to each group-specific effect by the LP-DiD estimator are unchanged by
the inclusion of exogenous or pre-determined covariates. In more general settings, the weights
are proportional to the residuals of a regression of the treatment indicator on time effects and the
covariates.

To explore the role of covariates, we now assume that no anticipation and parallel trends hold
after conditioning on a set of observable exogenous or pre-determined covariates (Assumptions 3
and 4 in the main text).

A.2.1 Covariates with linear and homogeneous effects

The DGP Assume that covariates have a linear and homogeneous effect on the outcome.
Specifically, assume the following DGP,

h h
ApYip =0 + Puxit + T ponDipan = Ti g1 Dip1 + €54 (A7)

LP-DiD specification with covariates The LP-DiD estimating equation with clean controls
and control variables is

Yiteh —Yit—1 = ﬁﬁp —-DiD AD;; treatment indicator
+ 0, Ax; covariates
e . (A8)
+ 6} time effects
+€?t,‘ forh=o,...,H,

restricting the sample to observations that respect condition A.3.

Weights derivation All the definitions of clean control subsamples and indicators, and the
results related to those, that have been described in Section A.1 above, still hold.
The LP-DiD specification of Equation A.8 can be rewritten as

LP-DiD h, h
Apyip— ppdxip = B ' ADjg + Of + € -
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Therefore, by the Frisch-Waugh-Lovell theorem, we have
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where Aﬁi,pg is the residual from a regression of AD on time indicators in the sample defined by
condition A.3.

The equivalence of Equation A.5 above still holds; therefore, for all observations belonging to
the same group g > o, we have AD;p, = ADgp, =1 —Ns /Necs,),

Given the assumptions about the DGP, we have
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This is the same expression as in the case of unconditional parallel trends and no covariates
analyzed above, and it therefore leads to the same result,

E ( ﬁhLP—DiD> = Yeso wé};l—DiDTg(h)'

where the weights are given by Equation A.6 above.

A.2.2 More general setting

Now consider a more general setting, in which Assumptions 3 and 4 hold, but we do not
restrict the effect of covariates to be linear or homogeneous. In this more general setting, the
Frisch-Waugh-Lovell theorem implies

Y7, Yieccs, {Af)f,ij (Ahyi,pj)}
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where ALN)ZC-,pg = ALN);pg is the residual from a regression of AD on time indicators and the control
variables x;; in the sample defined by condition A.3.
The weights are thus given by

~C
NgADg,pg

Y g40 Ng (Aﬁgpg) |

As noted in the main text (Section 3), it is always possible to preserve non-negative variance-
weighted weights by employing semi-parametric propensity-score methods, or obtain a equally-
weighted effect using regression adjustment.
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