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Abstract

This paper formulates an affine term structure model of bond yields from a dy-

namic stochastic equilibrium model, with observable macro state variables as the

term structure factors. Model implications for the joint macro-term structure dy-

namics are consistent with the empirical patterns from the VAR estimation. Model

calibration and simulation exercises also provide clear macroeconomic interpretations

of the latent term structure factors as found in the finance literature: most of the

“slope” factor movement can be explained by exogenous monetary policy shocks,

and the “level” factor movement is closely related to the technology shocks.
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1. Introduction

The term structure of interest rates and macroeconomic activity are closely related. Bond-

traders and financial analysts often cite monetary policy as a major factor in term structure

movements, and the bond market is sensitive and responds quickly to macroeconomic news

releases (Gürkaynak, Sack, and Swanson (2004)). Likewise, term structure movements convey

important information about the future state of macroeconomy (Bernanke and Blinder (1992),

Estrella and Hardouvelis (1991) and Mishkin (1990), among others). Yet few studies have ex-

amined the joint dynamics of the term structure and the macroeconomy in a general equilibrium

setting. Most general equilibrium models in the macroeconomics literature do not incorporate

long-term interest rates, and most term structure models in the asset pricing literature are either

reduced-form or built in an endowment economy and do not explicitly take structural macro

dynamics into consideration.

This paper proposes a framework that complements the standard general equilibrium models

with the term structure of interest rates. Following the no-arbitrage-based asset pricing ap-

proach, interest rates of different maturities are found to be linear functions of macro state vari-

ables, whose dynamics are determined by the underlying general equilibrium models. Whereas

this framework can be applied to various dynamic stochastic general equilibrium models, I focus

on a quite standard New Keynesian general equilibrium model with costly price adjustment and

capital adjustment, and examine the model’s implications for the joint dynamics of macroeco-

nomic aggregates and the term structure, which are found to be broadly consistent with the

empirical pattern in the U.S. data. I also explore the economic nature of the latent term struc-

ture factors that are often used to describe the term structure movements (Knez, Litterman

and Scheinkman (1994), Dai and Singleton (2000), Duffee (2002), among others) in the finance

literature, and find that the commonly named “slope” factor is closely related to exogenous

monetary policy shocks, and the “level” factor is primarily driven by the technology shocks.

Building such a joint macro-term structure framework pays off for reasearchers in both

macroeconomics and finance. For macroeconomists who want to bring long-term interest rates

into their analysis, this framework extends the macro general equilibrium models into a very

tractable linear model of term structure using the rigorous no-arbitrage based asset-pricing

approach, which is central to modern finance literature. For financial economists, this framework

provides a solid macroeconomic basis for understanding how various fundamental macroeconomic
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shocks affect the determination of term structure factors and future term structure movements.

This line of research is part of a rapidly growing literature exploring the relation between

the term structure and macroeconomic dynamics. The canonical term structure studies in the

finance literature do not take macroeconomic dynamics into consideration; rather, they assume

that term structure movements are driven by a few latent factors (Litterman and Scheinkman

(1991), Dai and Singleton (2000), Duffee (2002), among others) or a few linear combinations of

interest rates with different maturities (Duffie and Kan (1996)) without a clear macroeconomic

interpretation. Recent studies such as Kozicki and Tinsley (2001), Dewachter and Lyrio (2002)

and Wu (2003) use the VAR framework to trace the effect of macroeconomic shocks on the

term structure. Ang and Piazzesi (2003) and Ang, Piazzesi, and Wei (2004) apply the no-

arbitrage-based affine term structure modeling techniques to VAR models, and Rudebusch

and Wu (2004a) and Hördahl, Tristani and Vestin (2004) further combine such techniques with

reduced-form structural New Keynesian models. However, all of them are reduced-form analysis

and are lack of a general equilibrium basis.

Only a few studies, which are in the consumption-based asset pricing literature, adopt the

general equilibrium approach in modeling the term structure; these include the pioneering work

of Cox, Ingersoll, and Ross (1985), followed by Constantinides (1992), Longstaff and Schwartz

(1992), and Sun (1992). However, to obtain analytical term structure formulae, these studies

often make very strong simplifying assumptions about the economy and, thus, are quite limited in

examining the joint macro-term structure dynamics. Indeed, introducing complicated dynamic

stochastic general equilibrium models into term structure analysis (and asset pricing in general)

involves significant computational challenges. As such models often have no analytical solutions,

the usual practice among macroeconomists is to linearize them and examine the first-order

approximations of the model solution. The problem is, linearizing the Euler equations leads to

“certainty equivalence,” which implies that all kinds of assets would have identical returns, thus

rendering it useless for asset pricing studies.

As an alternative strategy, various numerical algorithms can be used to solve the mod-

els and obtain nonlinear solutions as well as nonzero risk compensations. For instance, using

“parameterizing expectations” algorithm, den Haan (1995) numerically solves a simple real busi-

ness cycle (RBC) model with money and analyzes the behavior of the nominal term structure.

Chapman (1997) adopts the same numerical algorithm to solve a RBC model and examine the
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cyclical properties of real term structure. Evans and Marshall (1998) uses a mixture of partial

linearization, Gauss-Hermite quadrature, and a Monte Carlo method to solve their “limited par-

ticipation” model and analyze monetary policy’s effects on the nominal term structure. While

these studies have made significant progress in analyzing the term structure in a more realistic

general equilibrium environment, the computational burden it entails is so heavy that it is very

difficult to introduce more complicated macroeconomic dynamics along this line.

In solving the dynamic stochastic general equilibrium model established in this paper, I adopt

a two-step strategy: first I take a loglinearization of the model’s Euler equations and solve the

resulting linear system in the usual manner to yield a linear law of motion for the macro state

variables; in the second step I lognormalize the relevant bond-pricing Euler equations and derive

the risk compensation structure. This strategy, combined with the law of motion of macro state

variables, enables me to formulate a Gaussian affine term structure model, in which bond rates

of different maturities are all linear functions of the underlying macro state variables. This

method provides a tractable alternative to the numerical methods discussed above and can be

applied to various dynamic stochastic general equilibrium models.

The remainder of the paper is organized as follows. Section 2 estimates a recursive VAR

model and summarizes a few stylized facts about the nominal term structure and business cycles

in the post-war U.S. economy. Section 3 presents a New Keynesian dynamic stochastic general

equilibrium model with sticky price adjustments, which is widely used by macroeconomists.

Section 4 lays out the solution algorithm and derives the affine formulae for the term structure.

Section 5 calibrates the model and examines the model implications for the joint behavior of the

macroeconomy and the term structure. This section also explores the economic nature of the

latent term structure factors found in the finance literature. Section 6 concludes.

2. Stylized Facts from a Recursive VAR Estimation

This section examines the empirical relationship between the nominal term structure and busi-

ness cycles. Following Evans and Marshall (1998) and Wu (2003), I formulate the following

recursive VAR model:

∙
a b
c 1

¸∙
Yt
Rt

¸
=

∙
A(L) B(L)
C(L) D(L)

¸ ∙
Yt−1
Rt−1

¸
+ Σ

∙
εY,t
εR,t

¸
(2.1)

where the macroeconomic vector Yt is defined as
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Yt ≡ (IP,EM,PCEPI,M2, FFR,PCOM)0 where IP is industrial production, EM is nona-

gricultural payroll employment in the private sector, PCEPI is the core PCE price index,M2 is

the monetary aggregate M2, FFR is the federal funds rate, and PCOM is Commodity Research

Bureau’s spot market price index for all materials. All macro data are in logarithms except for

FFR. Rt, a term structure variable, can be either the 1-month, 3-month, 1-year, 2-year, or

5-year nominal interest rate, or the “level” or “slope” of the term structure (parsimoniously

defined as the equally weighted average of the five kinds of bond rates and the term spread

between 5-year rate and 1-month rate, respectively).1 The bond yields are the Fama-Bliss zero-

coupon U.S. Treasury bond yields data from CRSP. The process (εY,t, εR,t)0 is an i.i.d. vector

of mutually and serially uncorrelated structural shocks. Assuming that current and past term

structure shocks, εR,t, do not feed back to the monetary policy authority or the macroeconomy,

both b and B(L) are set to zero.

The VAR is estimated over the sample period 1983:01 to 2002:12, with twelve lags assumed

in each equation. Figure 1 displays the impulse responses of the macro variables Yt to one-

standard deviation monetary policy shocks and real output (IP) shocks. The solid lines plot

the point estimates and the dotted lines plot the 90% confidence bands drawn from Bayesian

Monte Carlo simulations. Both the impulse responses and the confidence bands are measured

in percentage deviations from the steady state.

A one-standard-deviation contractionary monetary policy shock has a significant but transi-

tory effect on the federal funds rate, raising it by 17 basis points on impact and 21 basis points

next month before it starts to fall and becomes trivial in one year. Monetary aggregate M2

falls during this period due to the liquidity effect. The shock also leads to gradual declines in

output and employment. However, the price level does not fall in response to the shock, indicat-

ing a “price puzzle” as described in Sims (1992). On the other hand, a one-standard-deviation

positive output shock leads to significant and persistent increases in industrial production and

employment. The federal funds rate rises by only 2 basis point in the month of the initial shock

and then gradually increases, reaching the maximal response of 12 basis points eight months

after the shock before falling back to the original level two years after the shock. The shock,

however, has insignificant effects on price level and on M2.

1The “level” and “slope” as intuitively defined above are well known to be highly correlated to the first two

principle components of the term structure, which account for about 99% of the total variations of all bond yields

in the sample period.
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Figure 2 plots the estimated responses of the term strcuture to the shocks. A one-standard-

deviation contractionary monetary policy shock increases the 1-month rate by approximately

17 basis points in the month when the shock occurs. The 1-month rate continues to climb in

the following months and then falls rapidly, with the responses become insignificant in about

ten months. The 3-month and 1-year rates display qualitatively similar patterns, although the

magnitude of the response decreases as the maturity increases. When we move to even longer

maturities, the initial effect diminishes even more: the initial response of the 2-year bond rate is

only about 7 basis points, and for the 5-year bond rate, it is 5 basis points. Moreover, the longer

the maturities are, the faster the responses die away: ten months for 1-month and 3-month

rates, six months for 1-year rate, three months for 2-year rate and two months for 5-year rates.

The second column of Figure 2 shows that, in response to a one-standard-deviaton positive

output shock, the 1-month bond rate rises and reaches its maximal of 12 basis points three

months after the shock. In contrast to the monetary policy shock, the magnitude of output

shock’s effects is very similar across bond maturities: the 3-month and 1-year rates rise and

reach the maximal of 11 and 13 basis points in the third months after the shock before they

gradually decline, and the 2-year and 5-year bond rates increase by a maximal of 12 and 11 basis

points in the second months after the shock. The term structure responses to the output shock

are quite persistent: none of the effects dissipate away until twelve to eighteen months after the

initial shock.

In summary, a contractionary monetary policy shock has large but short-lived effects on

short-term bond rates, with decreasing effects on longer maturities. In other words, there is not

a parallel upward shift of the term structure in response to such a shock, but rather a tilt that

makes the yield curve flatter. An alternative way to portray these changes is to look directly

at the effects on the shape of the yield curve: such a shock raises the “level” and decreases the

“slope” of the yield curve, and most of the effects dissipate away in six months. Evans and

Marshall (1998) have the similar findings on monetary policy shocks. In contrast, a positive

output shock has significant and relatively more persistent effects on the term structure, which

are quantitatively similar across different bond maturities. Such effects lead to a persistent

upward shift of the “level” of the yield curve, but lead to little change in the “slope” of the yield

curve.
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3. A New Keynesian Model with Capital Adjustment Costs

In this section I present the general equilibrium model for deriving the affine term structure in

the next section. The model is formulated in a framework where monopolistically competitive

firms face a quadratic cost when they adjust the nominal price of their product. Individual

firms employ labor and accumulate physical capital by paying capital installation costs, and the

monetary authority follows a short-rate feedback policy rule. The model economy has three

types of entities: households, firms, and a government whose sole function is to create money

and impose lump-sum taxes on households. The households own the firms, so all profits from

the firms are paid to the households as dividends.

Households

The representative household carries Mt−1 units of money and a portfolio of nominal zero-

coupon bonds with a maximal maturity of J periods, denoted by {Bj,t−1}Jj=1, into period t.2

Bj,t denotes the amount of the bond purchased at date t that pays one dollar at the end of

period t+ j − 1. During period t, the representative household supplies Nt units of labor at the

nominal wage rate Wt, receives real dividends Πt from the firms, and pays real lump-sum taxes

τ t to the government. The household purchases consumption goods Ct at the nominal price Pt,

adjusts its portfolio of nominal bonds, and carriesMt and the new bond portfolio {Bj,t}Jj=1 into

the next period. Thus, the flow budget constraint that the representative household faces is

Ct(1 + θVt) +
Mt

Pt
+

JX
j=1

bj,t
Pt

Bj,t + τ t =
Wt

Pt
Nt +Πt +

Mt−1
Pt

+
J−1X
j=0

bj,t
Pt

Bj+1,t−1, (3.1)

where Vt =
PtCt

Mt
is the velocity of money. The representative household needs money because

there are transaction costs in purchasing the consumption goods, and high real balances yield

low transaction costs. Leisure, Lt, that the household enjoys in period t is defined by

Lt = 1−Nt. (3.2)

2The time notation in this paper is such that any variable included in the information set of period t has a

time subscript t. Therefore, the amount of money inherited from last period is denoted by Mt−1, and the amount

of money carried over to next period, since it is known in period t, is denoted by Mt. This is in contrast to

the time notation that some other authors may choose, in which such terms may be denoted by Mt and Mt+1,

respectively.
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The representative household’s preferences are described by the expected utility function

E0

∞X
t=0

βtU(Ct, Lt), (3.3)

where β ∈ (0, 1) is a constant discount factor, and the single-period utility function takes the

form

U(C,L) =
Cγ(1−φ)L(1−γ)(1−φ) − 1

1− φ
. (3.4)

This is a Constant Relative Risk Aversion (CRRA) utility function, with φ as the coefficient of

relative risk aversion. Consumption and leisure enter the household’s utility through a Cobb-

Douglas function. The household chooses Ct, Nt, Mt, and {Bj,t}Jj=1for each t = 0, 1, 2, ... to

maximize its utility in equations (3.3) and (3.4) subject to the constraints in equations (3.1) and

(3.2).

Firms

For the structure of product markets, I adopt a monopolistic competition framework, along

the lines of Blanchard and Kiyotaki (1987). At time t, a final consumption good, C∗t , is produced

by a perfectly competitive firm. It does so by combining a continuum of intermediate goods,

indexed by i ∈ (0, 1), using the technology

C∗t =

∙Z 1

0
C∗

1
µ

i,t di

¸µ
, (3.5)

where 1 ≤ µ ≤ ∞ and C∗i,t denotes the time t input of intermediate good i. Let Pt and Pit

denote the time t prices of the final consumption good and intermediate good i, respectively.

Profit maximization implies the Euler equation

µ
Pi,t
Pt

¶−η
=

C∗i,t
C∗t

, (3.6)

where η = µ
µ−1 is the elasticity of demand for intermediate good i. Thus the demand for product

i is a function of the relative price Pi,t/Pt and the aggregate output of the final consumption

good, C∗t . Integrating (3.6) and imposing (3.5), we obtain the following relationship between

the price of the final good and that of the intermediate goods:

Pt =

∙Z 1

0
P

1
1−µ
i,t di

¸(1−µ)
. (3.7)
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Intermediate good i is produced by the intermediate firm i with the following production

technology:

Yi,t = AtK
α
i,t−1N

1−α
i,t −Φi,t, (3.8)

where 0 < α < 1 . Here At denotes the general productivity level in period t, Ni,t and Ki,t−1

denote time t labor and capital used to produce the intermediate good i.3 Φi,t denotes a fixed

cost of production. I rule out entry into and exit from the production of intermediate good i

and calibrate the fixed cost to guarantee zero profits in steady state. The production technology

At follows an AR(1) process

ln(At) = ρA lnAt−1 + (1− ρA) lnA
∗ + εA,t, (3.9)

where ρA ∈ (−1, 1) and the serially uncorrelated shock εA,t is normally distributed with mean

zero and standard deviation σA. A∗ > 0 is the logarithm of the steady-state technology level.

The intermediate firm i accumulates physical capital stock, and the accumulation process is

given by

Ki,t = Ii,t + (1− δ)Ki,t−1, (3.10)

where Ki,t is the amount of capital stock and Iit is the amount of physical investment in period

t. The existing capital depreciates at a constant rate of δ. The firm also faces capital adjustment

costs in the form of

ACK
i,t =

χK
2
(

Ii,t
Ki,t−1

)2Ii,t (3.11)

The marginal adjustment cost of investment is positive and increases as investment increases.

Each intermediate firm sells its output to the producer of the final consumption goods in a

monopolistically competitive market and is able to adjust the sales price of its output. However,

each faces a real quadratic adjustment cost (per unit of sales) in the form of 4

3The capital stock used in production in this period is inherited from the last period; therefore, it carries a

time subscript (t− 1) even though it is used in the production process in period t.
4Rotemberg (1982a, 1982b) introduces this quadratic form of price adjustment costs. Calvo (1983) develops

another mechanism to introduce price stickiness by assuming that in each period only a fraction of firms can

adjust their price and that this adjustment opportunity is allocated randomly across firms. As noted in King and

Watson (1996), both mechanisms yield the same dynamic pricing processes for the firms.
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ACP
i,t =

χP
2

∙
Pi,t
Pi,t−1

− (1 + π∗)

¸2
, (3.12)

where π∗ is long-run inflation expectation which is identical to the monetary authority’s explicit

inflation target (set to zero in later calibrations), and χP is the parameter of the price-adjustment

costs.5

The intermediate firm i chooses a plan for production, labor demand, pricing process, and

investment so as to maximize the expected present value of its real profit flows, conditional on

the information at time zero:

Max.E0

∞X
t=0

βtρtΠi,t, (3.13)

where the real profit Πi,t is defined as

Πi,t =
Pi,tC

∗
i,t −WtNi,t

Pt
(3.14)

and

C∗i,t = (1−ACP
i,t)AtK

α
i,t−1N

1−α
i,t −Φi,t − Ii,t −ACK

i,t. (3.15)

The firm’s discount factor is given by a stochastic process, {ρt}. In equilibrium, it represents

a pricing kernel for real contingent claims. Since the markets are complete in this model, it

equals the representative household’s intertemporal marginal rate of substitution (IMRS) for an

additional unit of consumption goods in period t.

Monetary Authority

The monetary authority’s policy rule takes the form of an interest rate feedback rule, which

is a reaction function of the short-term interest rate on the inflation and the real output gaps

as well as on the lagged short-term interest rate:

r1,t = ρrr1,t−1 + (1− ρr)(r
∗
1 + θ1(πt − π∗) + θ2(ln yt − ln ȳt)) + εr,t, (3.16)

5As argued in Ireland (1997) and Kim (2000), this specification implies that the agents in the economy adapt

themselves to a stable inflation rate. Therefore, it is costly to increase prices in excess of this rate, both because

of advertising costs and because an erratic pricing strategy causes consumer dissatisfaction.
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where 0 < ρr < 1, θ1 > 1− ρr, and θ2 > 0. r∗1 is the unconditional mean of the nominal short-

term (one-month) interest rate, and π∗ is the monetary authority’s target level of inflation rate

(set to zero in the calibration). yt is the output level. The potential output level, ȳt, is defined

as

ȳt = ψyt + (1− ψ)ȳt−1, (3.17)

where 0 < ψ < 1.

There are two major differences between equation (3.16) and the original Taylor rule. First,

equation (3.16) includes a lagged short-term interest rate, aimed at capturing the monetary

authority’s tendency to smooth changes in interest rates, as argued by Woodford (2003). The

monetary policy shock, εr,t in equation (3.16), is assumed to be distributed as N(0, σ2r). The

shock can either be interpreted as randomness in the monetary authority’s implementation of

the monetary policy rule (such as an institutional randomness), or, if we are willing to assume

that the monetary authority has an information advantage over private agents and is able to

respond to some variables that it observes but that private agents do not, then εr,t’s can also

represent the variables observed only by monetary authority but not by the public. The shock

εr,t is, in addition, uncorrelated with the technology shock εA,t at all leads and lags.

The second major difference between equation (3.16) and the original Taylor rule is the

interpretation of the output gap. In Taylor’s original formulation and in many descriptions of

optimal monetary policy, the output gap is interpreted as the difference between actual outuput

and a flexible-price output, where the latter is conditional on the current levels of all state

variables other than the price level. However, in reality the Federal Reserve is unable to observe

or accurately estimate a flexible-price output in real time, but rather may rely on some linear

rule to update its estimates of potential output or the natural rate of unemployment (Orphanides

and Williams (2002)). Equation (3.17) assumes such a simple learning rule for the monetary

authority. Notice that when ψ is set to zero, the output gap will be defined as the deviation of

actual output from a deterministic trend or steady-state output, as in Rotemberg and Woodford

(1997) and Basu and Kimball (2004).

Finally, the government creates fiat money and imposes lump-sum taxes, τ t, on households.

Its budget constraint is in the following form:
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Mt −Mt−1
Pt

+ τ t = 0. (3.18)

In order to maintain money market equilibrium, the money supply adjusts endogenously to meet

the money demand at short-term interest rates set by the monetary authority. Therefore the

policy at equilibrium will be characterized by a combination of an “active” monetary policy and

a “passive” fiscal policy, as in Sims (1994).

4. Affine Term Structure with Macro Factors

The general equilibrium model developed in Section 3 does not possess an analytical solution.

Conventional numerical methods are hardly applicable here because of the heavy computational

burden required to solve such a large-scale model. Most dynamic stochastic general equilibrium

models in the macroeconomics literature are solved by various linearization methods. However,

linearizing rational expectations models generates “certainty equivalence” in the model solution,

which implies that agents would behave as if they were risk-neutral. Consequently, different kinds

of assets would have identical expected rates of return, and this makes the task of pricing assets

trivial.

This section develops a tractable algorithm to overcome this dilemma. It solves the model

using the loglinear-lognormal approximations as first proposed by Jermann (1998), and the

interest rates of different maturities turn out to be linear functions of the state variables from

the underlying general equilibrium model. The algorithm preserves the simplicity of linearization

methods while avoiding “certainty equivalence” by deriving the term structure of interest rates

along the standard asset-pricing approach. Although in this paper I focus on examining the

term structure behavior in the specific model laid out earlier, the algorithm can be applied to

other kinds of dynamic stochastic general equilibrium models as well.

The first step of the algorithm is to loglinearize the Euler equations of the general equilibrium

model (see the Appendix for details) around the non-stochastic steady state and solve the

resulting system of linear difference equations. The model solution of the variables zt is in linear

functions of the state variable st

zt = µz +Ψzst, (4.1)

with the law of motion of st given by
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st = µs +Ψsst−1 +Σsεt, (4.2)

where εt = (εr,t, εA,t)0 are the structural shocks in the model economy.

The Euler equations for pricing the nominal bonds are

bj,t = βEt(
λt+1/Pt+1
λt/Pt

bj−1,t+1) = Et(SDFt+1bj−1,t+1) j = 1, 2, ..., J (4.3)

where bj,t is the price of j-period nominal zero-coupon bonds at time t. λt is the Lagrangian

multiplier of the agent’s monetary budget constraint (3.1), and Pt is the general price level.

SDFt+1 is the stochastic discount factor for nominal assets and is defined as

SDFt+1 = β
λt+1/Pt+1
λt/Pt

, (4.4)

and its dynamics are obtained from equation (4.1) as

ln(SDFt+1) = α0 + α01st + α02εt+1, (4.5)

where α0, α1, and α2 are constants from µz, Ψzst−1, and Σz.

Following the common practice in the asset-pricing literature, I then take the logarithm of

equation (4.3):

ln(bj,t) = Et[ln(SDFt+1) + ln(bj−1,t+1)] +
1

2
vart[ln(SDFt+1) + ln(bj−1,t+1)].

j = 1, 2, ..., J (4.6)

Equation (4.6) holds exactly when the conditional distribution of bond prices, bj,t+1, and the

stochastic discount factor, SDFt+1, are joint lognormal, or approximately if it is not (Campbell,

Lo, and MacKinlay (1997)).

By substituting (4.5) into (4.6) for j = 1 and noting that b0,t = 1 , I obtain the following

formula for a one-period bond rate:

−r1,t = ln(b1,t) = Et[ln(SDFt+1)] +
1

2
vart[ln(SDFt+1)]

= α0 + α01st +
1

2
α02α2. (4.7)
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Note that if we simply loglinearize all the Euler equations, the one-month short rate would

be −α0−α01st, differing from equation (4.7) by α
0
2α2/2. This occurs because the loglinearization

algorithm ignores the agent’s considerations about uncertainties and throws away the risk com-

pensations. The lognormality formula in equation (4.6) picks up this risk-compensation term

and yields the risk-rectified one-month rate.

Equations (4.5) and (4.6) also imply that the market price of the risks associated with the

fundamental macro shocks, εt+1, is -α02. To see this, suppose that the j-period nominal bond

carries γ units of risks, so the logarithm of the price of a j − 1 period nominal bond is

ln(bj−1,t+1) = Et ln(bj−1,t+1) + γ0εt+1. (4.8)

Substituting it back into equation (4.6) yields

ln(bj,t) = −r1,t +Et ln(bj−1,t+1) + α02γ + γ0γ/2,

and the excess holding-period return of a j-period bond over a one-period bond becomes

Et ln(bj−1,t+1)− ln(bj,t)− r1,t = −α02γ − γ0γ/2,

where −γ0γ/2 appears because of the convexity effect and is negligible, and −α02γ is the com-

pensation for carrying γ unit of risks. Therefore, −α02 is the market price of risks associated

with the macro shocks �t’s.

The state transition equation (4.2), the short-rate equation (4.7) and the risk-price solution

−α02 form a discrete-time Gaussian affine term structure model. It falls within the class of affine

term structure models since the logarithm of the bond prices is a system of linear (or affine)

functions of the state variables st. More precisely, the formulae of the logarithm of the bond

prices are given by

ln(bj,t) = Aj +B
0
jst, (4.9)

and the coefficients Aj and Bj are recursively defined by

A1 = α0 +
1

2
α
0
2α2

B1 = α1

Aj+1 −Aj = B
0
j(µs + Σsα2) +

1

2
B
0
jΣsΣ

0
sBj +A1

Bj+1 = Ψ0sBj +B1; j = 1, 2, ..., J (4.10)
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The continuously compounded yield to maturity, rj,t, of a j-period nominal zero-coupon bond

is then given by

rj,t = − ln(bj,t)/j = Aj +Bjst. (4.11)

where Aj = −Aj/j and Bj = −Bj/j.6

The Gaussian affine term structure model established above appears similar to those in

Vasicek (1977), Duffie and Kan (1996), Dai and Singleton (2000), Ang and Piazzesi (2003),

Rudebusch and Wu (2004), and others. However, this model is different in several ways. In this

model, both the dynamics of state variables and those of the term structure are endogenously

derived from a rational expectations general equilibrium model, and all the factors have clear

macroeconomic interpretations. In contrast, most of the term structure models in the finance

literature view term structure movement as controlled by some unobservable latent factors whose

stochastic processes are exogenously given. Recent studies such as Ang and Piazzesi (2003) and

Ang and Piazzesi and Wei (2004) include real GDP growth and the inflation rate as additional

macro factors in their latent-factor models, but the underlying state dynamics are still in re-

duced forms, and the latent term structure factors still lack clear macro significance. Hördahl,

Tristani, and Vestin (2004) and Rudebusch and Wu (2004) build their term structure models on

top of a reduced-form New Keynesian model, and Rudebusch and Wu (2004a) further provide

macro interpretations of the latent term structure factors. However none of these affine term

structure models are based on a dynamic stochastic general equilibrium model. Furthermore,

the market price of risks in this model is obtained as part of the macro general equilibrium

solution. In contrast, the above studies only assume a flexible functional form of risk prices and

estimate them. Although the risk price representations adopted by those studies prove to be

quite effective in matching certain properties of the U.S. term structure such as explaining the

deviations from the expectations hypothesis (Dai and Singleton (2002)), they still lack concrete

equilibrium interpretations. As pointed out by Cox, Ingersoll, and Ross (1985) and Longstaff

and Schwartz (1992), arbitrarily choosing a functional form of risk compensation may lead to

internal inconsistency or arbitrage opportunities. The general equilibrium approach adopted in

6Although the real term structure is not focused on here, it can be easily derived in a similar fashion. With

the real pricing kernel defined as SDFR
t+1 = βλt+1t/λt and ln(SDFR

t+1) = αR0 + αR01 st + αR02 εt+1, the real one-

period interest rate becomes rR1,t = − ln(bR1,t) = −αR0 − αR01 st − 1
2α

R0
2 αR2 ; real long-term real interest rates can be

calculated in a formula similar to equation (4.10).
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this paper clearly has advantages over the reduced-form studies in this dimension.

However, such advantages come at a price. In particular, by taking lognormality approxima-

tions of Euler equations in such a Gaussian general equilibrium model with constant variances,

I am essentially restricting the pricing kernel to be conditional homoskedastic (equation (4.5)).

This leads to constant term premia and implies an expectations hypothesis, which is largely re-

jected by post-war U.S. data in most empirical studies (although several recent studies, including

Lange, Sack, and Whitesell (2003) and Rudebusch and Wu (2004b), find that the behavior of the

expectations hypothesis since the mid-1980s has improved greatly). However, as I show in the

next section, this approximation does not hurt the model’s ability to replicate salient business

cycle patterns of the term structure movement, which is the focus of this study.

5. Calibration of the Macro Affine Term Structure Model

This section calibrates the sticky-price model and compares the model implications for joint

macro-term structure movement with the VAR estimation results from Section 2. Based on

model calibration and simulations, I also investigate the economic nature of the latent term

structure factors as found in the finance literature.

5.1. Model Calibration

Table 1 reports the calibrated value of model parameters. I adhere closely to the general equi-

librium business cycle literature in choosing these values. The discount factor β is set equal to

(0.97)12. The range of possible relative risk-aversion parameter values, φ, is quite wide in the

literature, from 1 as in log utility to 11 as assumed by den Haan (1995). I choose to set it at

6, the midpoint between 1 and 11, which is also close to the 5.65 estimate of Leeper and Sims

(1994) and between the two estimates reported by Epstein and Zin (2001), 4.82 and 8.21. The

weight of consumption in the utility function γ is calibrated to 0.6 as estimated in Leeper and

Sims (1994). Kim (2000) reported a similar estimate of 0.67. θ is set to 0.01, which implies a

transaction cost of about 0.7% of gross consumption as estimated by Leeper and Sims (1994).

For the production and firm side, the values of α (capital’s share in the Cobb-Douglas

production technology) and δ (the monthly capital depreciation rate) are standard choices.

Following Rotemberg and Woodford (1995), the markup parameter µ is set to 1.4, the value also

chosen by Ireland (1997). The calibrated value of χK , the parameter of the adjustment costs of
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capital investment, is calibrated to Kim (2000)’s estimate, implying capital adjustment costs of

5.6% of gross investment at steady state. The value of χP (the parameter of adjustment cost of

changing the prices) is set to 4, implying that in steady state the adjustment costs of changing

the prices by 10% (or 120% if expressed in annual rates) in excess of the long-run inflation rate

are about 2% of the total output. Ireland (1997) reports a similar estimate of χP at 4.05.

For the monetary policy rule, θ1 and θ2 are set to the original values suggested by Taylor

(1993). Potential output is assumed to be a mixture of last period’s potential output and this

period’s real output, with each accounting for 50% of the potential output level for this period.

The autoregressive coefficient in the monetary policy rule, ρr, is set to 0.95, corresponding to a

quarterly interest-smoothing parameter of about 0.86, close to various estimates (e.g., Clarida,

Galí and Gertler (2000)) of the Federal Reserve’s policy rule.

Finally, the technology is assumed to follow a quite persistent process, with the AR(1)

coefficient ρA set at 0.99, or about 0.97 on a quarterly frequency, which is the estimate obtained

by Ireland (1997). Kim (2000) reports an even higher estimate of 0.98, and Leeper and Sims

(1994) obtains an estimate of almost unit root (both on quarterly frequency). σr (the standard

deviation the monetary policy shocks) is set at 50 basis points (annual rate), and σA is set to

0.0087, as implied by den Haan (1995) and close to Ireland (1997). As I show below, such choices

of the sizes of shocks imply impulse responses that are similar in magnitude to the empirical

VAR estimation results.

5.2. Implications of Model Calibration

5.2.1. Model Implications on the Macro Economy

To understand the response of the term structure to macroeconomic structural shocks, it is

useful first to look into the dynamics of output, consumption, investment, and inflation in the

model. Figure 3 plots the impulse responses of various macroeconomic aggregates to a one-

standard-deviation increase in each of the two structural shocks in the model. Each response

is measured in percentage point deviations from the steady state.

The first column of Figure 3 shows the impulse responses to a one-standard deviation con-

tractionary monetary policy shock. Such a shock leads to an instant 26-basis point increase

in the nominal 1-month interest rate (annualized), and the price level declines by 0.2%. The

monetary contraction lowers output by 0.1% and consumption and employment by 0.2%. The
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declines in the levels of both inflation and output cause a gradual easing of monetary policy, and

both inflation and output return to their original levels in about five months. This implies that

the monetary policy shock has a significant but transitory effect in the calibrated model. Invest-

ment is virtually unchanged, as it is too costly to adjust capital stocks in response to a transitory

shock. By and large, the model replicates the dynamic responses of the macro aggregates as

observed in the VAR estimation. However, the monetary policy shock has a longer-lasting effect

on output in the VAR estimation than in the calibrated model. This is not surprising, as the

literature has concluded that it is very difficult for rational expectations models to generate

any long-lasting effects on output or long-term interest rates (Gürkaynak, Sack, and Swanson

(2004)). Increasing the price-stickiness parameter, χP , will help prolong monetary policy’s real

effects, but not enough to match the persistence observed in the VAR estimation.

The second column of Figure 3 displays the impulse responses to a one-standard deviation

positive technology shock, which increases output by about 1%. The shock strongly boosts

capital investment and employment, and consumption jumps by about 0.5% and continues to

increase. Higher productivity tends to lower the price level slightly, and this partly offsets

the central bank’s intention to raise the interest rate in the face of a positive output gap.

Consequently the nominal one-month rate gradually rises, with a maximal increase of 13 basis

points. The impulse responses in this column are still significantly different from zero two years

after the initial shock, as the technology shocks are quite persistent in the calibrated model.

This is consistent with the empirical findings in the VAR estimation.

The fact that the monetary policy shocks appear transitory and that technology shocks

appear permanent in this model does not depend on the relative sizes of ρr and ρA. Indeed,

when ρr is set to 0.99 and ρA to 0.9 (or about 0.72 on a quarterly frequency, which is much lower

than the estimates obtained in the previous literature), the output response to the monetary

policy shocks still dissipates away in less than one year, while the response to the technology

shock remains above zero even two years after the initial shock. This is consistent with other

dynamic stochastic general equilibrium studies which find that monetary policy shocks have

transitory real effects, while technology shocks have persistent real effects.

5.2.2. Model Implications on the Term Structure

Risk Compensations on Nominal and Real Assets
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The market prices of macro uncertainties implied by the parameter calibration are given

in Table 2. As equation (4.8) indicates, the risk prices reported are indeed the excess risk

premium or excess holding-period return (in excess of the default-free 1-month interest rate) on

any financial asset that carries one unit of macroeconomic structural shocks. In particular, in

the benchmark calibration case (Table 1), a nominal asset carrying one unit of risk associated

with contractionary monetary policy shocks calls for a risk premium of -0.57% (monthly), or

about 7% per annum, and a nominal asset carrying one unit of risk associated with positive

technology shocks requires a risk premium of 1.44% (monthly), or 17% per annum. On the

other hand, if returns are denominated in real terms, then a real asset loaded with one unit of

risk associated with contractionary monetary policy shocks will have a negative excess return of

4% (annualized, over 1-month real bond), and if the real asset instead carries one unit of risk

associated with positive technology shocks, then the expected excess return on this asset in one

year will be 18 %.

The reason for a negative risk premium on carrying contractionary monetary policy shocks is

as follows: in the model economy, a contractionary monetary policy shock decreases the levels of

output and consumption, as shown in the first column of Figure 3. If an asset yield is high when

the monetary contraction occurs and low when the monetary expansion occurs, then holding

such an asset tends to mitigate the consumption variability compared with holding the risk-free

asset. The investors in the model economy are willing to hold such an asset even if its expected

return is lower than the risk-free short rate; that is, such an asset will have a negative risk

premium.

On the other hand, a positive technology shock boosts levels of the output and consumption.

As the marginal utility of consumption becomes lower, the asset returns are valued less. There-

fore, an asset whose returns are positively correlated with the technology shock needs to have a

higher expected rate of return than the risk-free rate to compensate the investors for holding it.

Consequently, this asset asks for a positive risk premium.

The rest of Table 2 reveals some interesting relations between risk prices and certain proper-

ties of the model. For instance, a higher (lower) risk aversion parameter φ increases (decreases)

the magnitude of risk prices, as more (less) risk-averse agents will require higher (lower) com-

pensation for carrying the same risks. However, changes in the risk price of technology shocks

are much larger than changes in the risk price of monetary policy shocks, as the technology
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shocks have much larger effects on consumption, and, therefore on the intertemporal marginal

rate of substitution (IMRS).

In the absence of price stickiness, monetary policy shocks have very little effect on consump-

tion and employment and, therefore, on the IMRS. Thus the associated risk compensation for

a real asset is almost zero (row 5 of Table 2). The risk compensation for technology shocks, on

the other hand, is slightly higher, as output and employment will respond more strongly to a

technology shock in a flexible-price economy than in a sticky-price economy. The risk premia on

nominal assets, however, are almost the same as in the sticky-price economy, as the increases in

the volatility of the price level are partly offset by the decrease in the volatility of consumption

(equation (4.4)).

Finally, without capital adjustment costs (χK = 0), a positive technology shock leads to a

stronger increase in investment and a weaker increase in consumption. Thus the IMRS becomes

slightly less volatile and the associated risk price declines (row 6 of Table 2). The impulse

responses of consumption to monetary policy shocks, however, are very similar to those with

nonzero capital adjustment costs, and thus the associated risk price is unchanged.

Impulse Responses of the Term Structure to Structural Shocks

Figure 4 displays the instantaneous impulse responses of the term structure to the two

macroeconomic shocks in the model. A one-standard-deviation contractionary monetary policy

shock raises the 1-month interest rate by about 26 basis points, much more than long-term

interest rates (about 1 basis point at 5-year maturity). Thus the yield curve tilts and becomes

less steeply upward-sloped (or more steeply downward-sloped). This resembles the effect of a

“slope” factor movement as identified in numerous term structure studies (e.g., Litterman and

Scheinkman 1991 and Knez, Litterman, and Scheinkman 1994). On the other hand, a one-

standard-deviation positive shock to technology raises the yields of all maturities by much more

similar amounts: 8 basis points for the 1-month maturity, 12 basis points for the 1-year maturity,

and 5 basis points for the 5-year maturity. It thus boosts the level of the entire yield curve and

is quite similar to the impact of a “level” factor as found in the finance literature.

Next consider the model dynamics for the term structure more generally. As displayed in the

first column of Figure 5, a one-standard-deviation contractionary monetary policy shock raises

the 1-month interest rate by approximately 26 basis points; the response declines rapidly, and

six months after the shock, the rate returns to its steady-state level. Longer-term interest rates
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display qualitatively similar but quantitatively smaller responses: the 3-month interest rate rises

by 15 basis points and it returns to within 1 basis point of its steady-state level in five months;

the 1-year, 2-year and 5-year rates increase by 5, 2, and 1 basis points on impact, and the

responses die away in three to four months. Therefore, a contractionary monetary policy shock

has transitory effects on the term structure and causes the yield curve to flatten (the “slope”

decreases by 25 basis points within the month of shock, and does not return to its original level

for six months).

On the other hand, a one-standard deviation positive technology shock raises the interest

rates of different maturities by similar amounts, both at impact and over time. The responses

are persistent: even two years after the shock, bond rates with a maturity of two years or less

are still significantly higher than their steady-state levels, and the 5-year bond rate returns to

its steady state level only after eighteen months. Such changes lead to a very persistent, almost

parallel, upward shift of the whole yield curve on impact (the “level” jumps up by 9 basis points

on the shock), but have a negligible effect on the slope of the yield curve (“slope” decreases by

3 basis points within the first month of impact, much less than the 25 basis points in column 1).

In summary, the two kinds of structural shocks in the model have very different implications

for the term structure: the monetary policy shocks affect the term structure primarily by chang-

ing its slope, and technology shocks affect the term structure by shifting its level. Moreover,

the effects of technology shocks on the term structure are much more persistent than those of

monetary policy shocks. These patterns are both qualitatively and quantitatively similar to

those obtained from the VAR study.

5.3. Identifying the Term Structure Factors

Most of the term structure studies in the finance literature characterize term structure move-

ment as controlled by some latent factors, often called “level,” “slope,” “curvature,” etc (Knez,

Litterman and Scheinkman (1994)), without assigning macroeconomic significance to them. The

impulse responses shown in Figures 4 and 5 suggest close links between monetary policy shocks

and the slope of the yield curve, and between technology shocks and the level of the yield curve.

This subsection further explores these links. For parsimony I continue to use the intuitive defi-

nition of “level” and “slope” used above instead of any model-specific definition used in various

empirical term structure studies, such as Vasicek (1977), Dai and Singleton (2000) or Ang and
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Piazzesi (2003), etc.

First, examine the variance decompositions displayed in Table 3. Columns 2 to 5 of the table

report the variance decompositions as implied by the model calibration in the benchmark case,

and columns 6 to 9 report the variance decompositions from the VAR estimation in Section

2. In the calibrated model, monetary policy shocks have strong influences on the short end of

the yield curve, but much weaker effects on the long end: these shocks account for 56% and

32% of the conditional variances of the 1-month rate at one-month and three-month forecasting

horizons, but only 13% for the 5-year rate at the three-month horizon. Consequently monetary

policy shocks account for most of the variability of the “slope” of the yield curve (76% at 1-

month horizon) but only a small fraction for the variability of the “level” (19% at the one-month

horizon). Such effects decline sharply as the forecasting horizon lengthens, and at the one-year

horizon only 12% of the conditional variances of the 1-month rate and 18% of the conditional

variances of the “slope” are attributable to monetary policy shocks, with much smaller fractions

for the 5-year rate and the “level” factor.

In contrast, the technology shocks account for a smaller fraction of the conditional variances

of the short end of the yield curve and the “slope,” especially at short forecasting horizons.

However, these shocks are responsible for most of the variability of the long end of the yield

curve as well as the “level”: 87% for the 5-year rate at the three-month horizon, 81% for

the “level” at the one-month horizon, and 91% at the three-month horizon. Moreover, as the

forecasting horizon lengthens, the technology shocks start to dominate the movement of the

whole yield curve: at the one-year horizon, 97% of the conditional variances of the “level” and

82% of the “slope” are attributable to the technology shocks. And these fractions are even

higher at the two-year horizon.

The VAR estimation results also reveal similar patterns:7the monetary policy (FFR) shocks

account for the majority of the conditional variances of the short end of the yield curve at short

forecasting horizons, but only a small fraction of the conditional variances of the long end of the

yield curve (7% for 5-year rate at the one-month horizon). They explain a substantial part of the

“slope” movement (31% at the one-year horizon) but much less of the “level” (11% at the one-

year horizon). Moreover, such effects decline substantially as the forecasting horizon lengthens.

7 It should be noted that the monetary policy shocks and the technology shocks are the only two kinds of shocks

in the calibrated model, while in the VAR there are five additional kinds of shocks. Consequently the sizes of the

fractions reported in columns 6 to 9 are expected to be much smaller than their counterparts in columns 2 to 5.
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On the other hand, compared with the monetary policy shocks, the output (IP) shocks explain

a larger portion of the bond rate movements at the long end of the yield curve (13% versus 7%

at the one-month horizon and 13% versus 4% at the one-year horizon for 5-year rate), but at the

short end of the yield curve the pattern is reversed (6% versus 57% at the one-month horizon

and 19% versus 34% at the one-year horizon for 1-month rate). In terms of the transmission

channels on the whole yield curve, output shocks tend to change the “level” rather than the

“slope”, as they explain a much higher fraction of “level” movement than “slope” movement

(14% versus 9% at one-month horizon and 19% versus 6% at one-year horizon). And there is no

significant declining trend for such effects as the forecasting horizon lengthens, indicating that

output shocks are relatively more persistent than monetary policy shocks.

In summary, the variance decompositions from both the model calibration and the empirical

VAR estimation support our conjecture that technology shocks play an important role in driving

the movement of the “level” factor as found in the term structure literature, and the exogenous

monetary policy shocks are closely related to the “slope” factor of the term structure.

Next I perform a simulation study to provide more supporting evidence for these interpre-

tations. I simulate the calibrated model as well as the whole yield curve (all 60 maturities from

1-month to 5-year) based on equations (4.10) and (4.11), and then regress the changes in the

implied term structure factors “level” and “slope” on current and lagged simulated monetary

policy shocks. Table 4 displays the median as well as 90% frequency or confidence bands of the

regression coefficients based on 1000 simulation draws, with each draw 300 months long.

In simulations based on the benchmark calibration (columns 2 and 3), the monetary policy

shocks have little effect on the movement of the “level,” with an adjusted R2 of 0.17. However,

these shocks have strong effects on the “slope” factor: one unit of a monetary policy shock

decreases the “slope” factor by 25 basis points in the month of the shock before the “slope”

factor gradually returns to its original level. A total of 94% of the variations of the changes in

the “slope” are attributable to the current and lagged monetary policy shocks in the past three

months. Notice that because technology shocks are the only other kind of shocks in the model,

most of the unexplained variations in the regression equations are attributable to them; in other

words, the technology shocks explain most of the variations of the changes in the “level” factor

but little of the “slope” movement.

Changing the relative persistence of these two kinds of shocks will certainly affect the inter-
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pretations of the term structure factors. Columns 4 and 5 shows the simulation results when the

monetary policy instrument (1-month rate) is assumed to be a very persistent process (ρr = 0.99)

and technology shocks a less persistent one (ρA = 0.95). When the short-term interest rate be-

comes a near random walk, a change in the short rate will cause quantitatively similar changes in

expected future short rates. Such a change will have a substantial impact on long-term interest

rates and essentially shift up the level of the whole yield curve; as a result, monetary policy

shocks now explain a larger part of the “level” movement (but still much less than the portion

explained by technology shocks in the benchmark case). On the other hand, monetary policy

shocks still explain most of the movement of the “slope” factor, as long-term rates respond by

less than short-term rates when monetary policy shocks occur. This also indicates that technol-

ogy shocks still affect the term structure by changing the “level” factor, even when the shocks

become less persistent.

Rudebusch and Wu (2004a) formulate a joint macro-term structure model and interpret the

“level” factor as the time-varying inflation target as perceived by the public and the “slope”

factor as the cyclical responses of the Federal Reserve to deviations of inflation and output from

its policy goals. For the “slope” factor, their interpretation is consistent with the interpreta-

tion implied in the model calibration and simulation exercise. For the “level” factor, the two

interpretations seem rather different but, in fact, complement each other in the following sense:

note that in the Taylor rule equation (3.16), the inflation target is set to a constant π∗ in this

model. If I relax this assumption and introduce a persistent process for the inflation target

(which is exactly what Rudebusch and Wu (2004a) find), this process will undoubtedly affect

the interest rates of different maturities by similar amounts and thus dominate the “level” factor

movement.8 On the other hand, Rudebusch and Wu (2004a) assume a constant long-term real

interest rate, which is not constant in this model – as shown in Figures 3 and 5, technology

shocks have very persistent effects on employment and capital accumulation and, consequently,

on the long-term real interest rates and the “level” factor. One can imagine that if Rudebusch

and Wu (2004a) have a persistent long-term real rate in their model, it would play an important

role in determining the “level” factor. Thus, although the differences in modeling assumptions

in these two studies lead to different interpretations of the “level” factor, they simply present

different facades of the identity of the “level” factor and, indeed, complement each other.

8The introduction of a very persistent process π∗t will increase the persistence of the nominal short rate, and

as shown in column 4 of Table 4, this will greatly increase the R2 of the “level” factor regression.
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6. Concluding Remarks

This paper develops a joint macro-term structure framework that allows one to derive an affine

term structure model of bond yields from a large class of general equilibrium business cycle

models with complete markets. This framework facilitates analyzing the joint dynamics of the

macroeconomy and the term structure of interest rates and exploring the mechanism through

which fundamental macroeconomic shocks affect the term structure. This is part of a rapidly

growing effort to connect the general equilibrium business cycle literature in macroeconomics

with the term structure literature in finance by providing an explanation of the cyclical behavior

of the term structure along the general equilibrium approach.

I also find that a simple dynamic stochastic general equilibrium model, in which the nominal

rigidities take the form of quadratic price adjustment costs in the monopolistically competitive

commodity market, perform fairly well in replicating the empirical cyclical pattern of the term

structure movement. Moreover, the model provides theoretical interpretations of the latent

term structure factors found in the finance literature: most of the “slope” factor movement can

be explained by exogenous monetary policy shocks, and the “level” factor movement is closely

related to technology shocks.

I conclude by noting a few avenues for future research. First, a number of studies suggest

that the monetary authority may have a time-varying, persistent inflation target. This model

can be easily extended to examine the implications of such an inflation target for the term

structure. Second, the state-dependent, linear risk price representations adopted by many recent

Gaussian affine term structure studies prove to be quite effective in generating time-varying term

premia and matching certain properties of the U.S. term structure movement (Duffee (2002),

Dai and Singleton (2002), Ang and Piazzesi (2003), etc). However, they are simply statistical

representations, and it is still a challenge to justify them in a general equilibrium setting. Finally,

the model established in this paper assumes the existence of a complete financial market. It

would be of interest to incorporate various kinds of financial frictions into the standard business-

cycle models and study the implications that follow, in particular on the term premia.
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Table 1: Calibration of Parameter Values

Household
β (0.97)12 φ 6 γ 0.6 θ 0.01

Firm
α 1/3 µ 1.40 δ 0.08/12 χK 312 χP 4

Monetary Policy
θ1 1.5 θ2 0.5 ψ 0.5 ρr 0.95 σr 0.0050/12

Technology
ρA 0.99 σA 0.0087
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Table 2: Market Prices of Macroeconomic Risks

Market price of risks Nominal Assets Real Assets
MP shock Tech. shock MP shock Tech. shock

Benchmark case (Table 1) -0.0057 0.0144 -0.0032 0.0152

risk aversion (φ)
φ = 1 -0.0057 0.0024 -0.0030 0.0033
φ = 11 -0.0058 0.0252 -0.0033 0.0261
frictions (χP , χK)
χP = 0, χK = 312 -0.0056 0.0144 -0.00002 0.0162
χP = 4, χK = 0 -0.0057 0.0141 -0.0032 0.0147
χP = 10, χK = 312 -0.0058 0.0144 -0.0041 0.0149
χP = 4, χK = 3120 -0.0057 0.0160 -0.0032 0.0180
transaction costs (θ)
θ = 0.1 -0.0058 0.0146 -0.0033 0.0154
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Table 3: Variance Decompositions

Model Calibration VAR Estimation
1-m 5-y level slope 1-m 5-y level slope

one-month horizon one-month horizon
monetary policy shock 55.81 0.86 18.66 75.92 57.19 7.36 25.25 8.84
technology shock 44.19 99.14 81.34 24.08 6.49 12.52 14.25 9.18

three-month horizon three-month horizon
monetary policy shock 31.70 12.92 8.87 49.44 62.20 4.32 23.85 19.29
technology shock 68.30 87.08 91.13 50.56 15.60 12.19 19.27 7.65

one-year horizon one-year horizon
monetary policy shock 11.50 0.19 3.05 17.79 33.56 4.03 11.41 30.50
technology shock 88.50 99.81 96.95 82.21 19.49 13.45 19.05 5.97

two-year horizon two-year horizon
Monetary policy shock 8.28 0.18 2.31 10.79 23.68 10.00 9.07 24.73
Technology shock 91.72 99.82 97.69 89.21 15.07 11.98 15.04 6.23

Table 3 reports the variance decompositions as implied by the calibrated general equilibrium model as well

as the ones from the VAR estimation. The numbers are in percentage points.
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Table 4. Term Structure Factor Regression Results

Benchmark case ρr = 0.99, ρA = 0.95

∆level ∆slope ∆level ∆slope

εr,t 0.0342 -0.2512 0.4622 -0.2064
(0.0242,0.0442) (-0.2577,-0.2450) (0.2952,0.4714) (-0.2186,-0.1942)

εr,t−1 -0.0175 0.1268 -0.0084 0.0332
(-0.0272,-0.0067) (0.1207,0.1336) (-0.0203,0.0044) (0.0205,0.0445)

εr,t−2 -0.0087 0.0624 -0.0061 0.0172
(-0.0188,0.0018) (0.0562,0.0686) (-0.0177,0.0079) (0.0044,0.0293)

εr,t−3 -0.0043 0.0310 -0.0052 0.0094
(-0.0139,0.0052) (0.0244,0.0377) (-0.0183,0.0070) (-0.0020,0.0205)

Adj. R2 0.1703 0.9359 0.6462 0.7767
(0.1015,0.2500) (0.9261,0.9440) (0.3397,0.7516) (0.7312,0.8107)

Table 4 displays coefficients obtained in regressing the simulated “level” and “slope” on the simulated current

and lagged monetary policy shocks. Both the median and the 90% confidence bands are reported, based on 1000

simulation draws (each of which 300 months long).
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Figure 1: Responses of Macroeconomic Variables in the VAR Estimations
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Figure 2: Responses of the Term Structure in the VAR Estimations
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Figure 3: Responses of Macroeconomic Variables to Macro Shocks in the

Calibrated Model
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Figure 4: Instantaneous Responses of the Term Structure to Macro Shocks
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Figure 5: Responses of the Term Structure to Macro Shocks in the Calibrated

Model
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7. Appendix: First-order Conditions of the General Equilibrium Model

Let λt, φl,t denote the Lagrangian multipliers associated with constraints (3.1) and (3.2), re-

spectively. The first-order conditions of the representative household are

For Ct :

Uc,t = λt[1 + θ(ω + 1)V ω
t ] (A1)

For Lt :

Ul,t = φl,t (A2)

For Nt:

Wt

Pt
λt = φl,t (A3)

For Mt :

λt
Pt
(1− θωV ω+1

t ) = βEt{
λt+1
Pt+1

} (A4)

For B1,t:

b1,t
λt
Pt
= βEt{

λt+1
Pt+1

} (A5)

For Bj,t:

bj,t
λt
Pt
= βEt{bj−1,t+1

λt+1
Pt+1

} j = 2, ..., J (A6)

The first-order conditions for the intermediate firm i are

For Nit :

(ρt
Pi,t
Pt

+ ξi,t
1

C∗t
)(1−ACP

i,t)(1− α)AtK
α
i,t−1N

−α
i,t =

Wt

Pt
ρt (A7)

For Iit :

(ρt
Pi,t
Pt

+ ξi,t
1

C∗t
)(1 +

3χK
2

I2i,t
K2
i,t−1

) = ϕi,t (A8)

For Kit:
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βEt{(ρt+1
Pi,t+1
Pt+1

+ ξi,t+1
1

C∗t+1
)[(1−ACP

i,t+1)αAt+1K
α−1
i,t N1−α

i,t+1+χK
I3i,t+1
K3

i,t

]+ϕi,t+1(1− δ)} = ϕi,t

(A9)

For Pi,t:

ρt
C∗i,t
Pt

+ ξi,tη(
Pi,t
Pt
)−η−1

1

Pt
+ (ρt

Pi,t
Pt

+ ξi,t
1

C∗t
)(−

∂ACP
i,t

∂Pi,t
)AtK

α
i,t−1N

1−α
i,t

+βEt{(ρt+1
Pi,t+1
Pt+1

+ ξi,t+1
1

C∗t+1
)(−

∂ACP
i,t+1

∂Pi,t
)At+1K

α
i,tN

1−α
i,t+1} = 0 (A10)

where ξi,t and ϕi,t are the Lagrangian multipliers associated with constraint (2.9) and (2.13),

respectively.

In a symmetric equilibrium, we have Pi,t = Pt, Ki,t = Kt, Ni,t = Nt, C∗i,t = C∗t , ρt = λt, and

ϕi,t = ϕt. In addition, there is an aggregate resource constraint

yt = AtK
α
i,t−1N

1−α
i,t − Φ = C∗t + Ii,t +ACK

t

1−ACP
t

(A11)

The dynamics of the variables at the equilibrium are then characterized by first-order condi-

tions (A1)-(A10) and constraints (3.1), (3.2), (3.6), (3.8), (3.10), (3.15), (3.18) and (A11), as well

as equations (3.9), (3.16) and (3.17) as the stochastic processes of the exogenous macroeconomic

shocks.
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