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Abstract

We study the the emergence of multiple equilibria in models with cap-
ital and bonds under various monetary and �scal policies. We show that
the presence of capital is indeed another independent source of local and
global multiplicites, even under active policies that yield local determi-
nacy. We also show how a very similar mechanism generates multiplici-
ties in models with bonds and distortionary taxation. We then explore the
design of monetary policies that avoid multiple equilibria. We show that
interest rate policies that respond to the output gap, while potentially a
source of signi�cant ine¢ ciencies, may be e¤ective in preventing multiple
equilibria and costly oscillatory equilibrium dynamics.

JEL Classi�cation Numbers: E52, E31, E63.

Keywords: Taylor rules, �scal policy, multiple equilibria, global dynamics

�We thank Stephanie Schmitt-Grohe, John Leahy, Hakan Tasci, Martin Uribe, and Lutz
Weinke for very useful comments. The views expressed in the paper are those of the authors
and are not necessarily re�ective of views at the Federal Reserve Bank of New York or the
Federal Reserve System.

1



1 Introduction

Recent papers have analyzed the role and the e¤ectiveness of monetary policy
in models of the economy where capital is one of the assets1 . These studies,
some of which use higher-order approximations around the steady state, analyze
the time series properties of calibrated models and explore the e¤ectiveness of
monetary and �scal policy rules in terms of welfare and stabilization. At the
same time, another related strand of this literature2 uncovered the possibility
of local and global indeterminacies in dynamic equilibrium models of monetary
policy for a wide range of model speci�cations and monetary policy rules. In
particular, in sticky price models allowing the interest rate to a¤ect the marginal
cost and output through its e¤ect on real balances, or to a¤ect �scal policy
through the government budget constraint and distortionary taxes, provided
plausible mechanisms for the emergence of multiple equilibria. In this paper we
show that the presence of capital is indeed another independent source of local
and global multiplicities, even under standard calibrations and active monetary
policies that yield local determinacy. We also show that there is a common
mechanism that generates multiple equilibria in the models with money, models
with distortionary taxes arising from the interaction of monetary and �scal
policies, and models with capital.
We then explore the design of monetary policies that avoid multiple equilib-

ria3 . We show that interest rate policies that respond to the output gap, while
potentially a source of signi�cant ine¢ ciencies as shown by Schmitt-Grohe and
Uribe (2004) and Woodford (2003), may be e¤ective in preventing multiple
equilibria and costly oscillatory equilibrium dynamics.
In the next section we spell out the general model with capital and bonds.

The following section gives the analysis of equilibria under various �scal and
monetary rules. We start with the analysis of the model with capital only,
and then we provide the economic intuition for local and global multiplicities.
Next we turn to the model without capital, but with bonds and distortionary
taxes under various �scal policy rules and we study the emergence of multiple
equilibria. In the subsequent section we discuss the formal equivalence of the
model with capital and the model with bonds. Finally, in the last section we
explore the role of monetary policies that respond to the output gap in addition
to in�ation.

1 (See for example Carlstrom and Fuerst (2004), Christiano, Eichenbaum and Evans (2003),
Schmitt-Grohe and Uribe(2004), Sveen and Weinke(2004))

2See Carlstrom and Fuerst (2004), Dupor (2001), Meng(2000), Benhabib,Schmitt-Grohe
and Uribe (2001a, 2001b, 2002, 2002b), Eusepi (2002), Hong (2002).

3For an alternative approach to the design of policies to select good equilibria when there
are potentially many local and/or global equilibria see Benhabib, Schmitt-Grohé, and Uribe
(2002), Christiano and Rostagno (2001) and Christiano and Harrison (1999) .
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2 The model

We consider a simple monetary model with explicit microfoundations and nom-
inal rigidity.

2.1 Private Sector

The economy is populated by a continuum of identical utility maximizing agents
taking consumption and production decisions. Each agent consumes a compos-
ite good made of a continuum of di¤erentiated goods, and produces only one
di¤erentiated good. Producers have market power and therefore set their price
to maximize pro�ts. They face convex adjustment costs of changing prices, the
only source of nominal rigidity in the model.
Each agent j maximizes the intertemporal utility function

U j =
1X
s=t

�s�t

"
C1��js

1� � � hjs �
 

2

�
Pjs
Pjs�1

� 1
�2#

(1)

where Cj;t denotes the composite good, hjt denotes hours worked and where
the last term measures the utility cost of changing prices4 . The composite good
is de�ned as

Cjt =

�Z 1

0

(Yjt)
�

1�� dj

� �
1��

(2)

where � > 1 and Yj;t is the di¤erentiated good. Given (2), the consumers�
demand for each di¤erentiated good is

Yjt =

�
Pjt
Pt

���
Cjt

where Pt de�nes the following price index

Pt =

�Z 1

0

(Pjt)
1��

dj

� 1
1��

:

Each producer uses labor and capital as factors of production

Yjt = K�
jth

1��
jt (3)

where Kjt denotes the amount of capital used by producer j. The production
function is Cobb-Douglas and displays constant returns to scale. Capital is
subject to depreciation and evolves as

Kjt+1 = (1� �)Kjt + Ijt (4)

4 In reduced form our model is almost identical to one with Calvo pricing, but see the
discussion in section 2.4.
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where Ijt is the investment good. It is assumed to be of the same form as the
composite consumption good, so that the producers have a demand of Yjt =�
Pjt
Pt

���
Ijt for each di¤erentiated good. Producers face the constraint that

aggregate demand for their good needs to be satis�ed at the posted prices

Yj;t = K�
jth

1��
jt =

�
Pjt
Pt

���
at (5)

where at =
R
(Cjt + Ijt) dj denotes absorption.

Each consumer-producer�s wealth evolves according to

Bjt
Pt

=
Rt�1
�t

Bjt�1
Pt�1

+ (1� � t)
Pjt
Pt
Yjt � Cjt � Ijt (6)

where Bjt is a one period bond and Rt denotes the gross nominal interest
rate. Each agent j receives income from selling her output. Income is taxed in
proportion � t. In order to simplify the analysis we assume a cashless economy
so that the only two assets available are bonds and capital.
Summing up, given Rt; � t; Pt; at and K0; B0; the problem of agent jconsists

of choosing sequences of Cjt; Ijt; Bjt; Pjt and hjt in order to maximize (1) under
the constraints (6), (5) and (4).

2.2 Government

The monetary authority sets the nominal interest rate by following the Taylor-
type policy rule

Rt = �R

�
Pt
Pt�1

��� �Yt
�Y

��y
(7)

where the in�ation target is set equal to zero and �R = ��1. The central bank
responds to deviations of output from its steady state value, not from the e¢ -
cient level of output. We focus on the case where �� > 1, so that the Taylor
principle is satis�ed. We chose a speci�cation where the central bank responds
to current rather than to future in�ation because forward looking policy rules
have been shown to be destabilizing. (See for example Carlstrom and Fuerst
(2004), Eusepi (2002,2003)).
The �scal authority�s liabilities in real terms evolve according to

Bt
Pt
=
Rt�1
�t

Bt�1
Pt�1

+

�
�g � � t

Z
Pjt
Pt
Yjtdi

�
(8)

where �g denotes (constant) government purchases. For simplicity we assume
�g = 0. The government �scal rule is:

� t

Z
Pjt
Pt
Yjtdi = �0 + �1Rt�1

Bt�1
Pt�1

+ �2

�
�g +

�
Rt�1
�t

� 1
�
Bt�1
Pt�1

�
: (9)
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Following Schmitt-Grohe and Uribe (2004) we consider two di¤erent �scal
policies. The �rst is a balanced budget rule that keeps the total amount of real
debt constant. It corresponds to the case where �0 = �1 = 0 and �2 = 1. The
second is a �scal rule requiring taxes to respond to deviations of real bonds
from a target, here normalized to zero. In this case �2 = 0 and �1 > 0. As
well known in the literature, this �scal policy rule can be �passive�or �active�.
In the passive case, to a �rst approximation, we set j(1� �1)j < 1 so that
the growth rate of government debt is lower than the real interest rate. This
implies that the government sets �scal policy to satisfy its intertemporal budget
constraint. In the active case the government conducts �scal policy disregarding
the e¤ects on its intertemporal budget constraint so that other variables such as
the price level need to adjust to guarantee the solvency of the �scal authority.

2.3 Equilibrium

Each period the goods markets clear, that isZ
Yj;tdj = ht

�
Kt

ht

��
=

Z �
Pjt
Pt

���
at (10)

where we use the fact that given our production function, the capital/labor
ratio is the same for every producer. Walras�law, (10), implies that the bonds
market also clears. We impose a symmetric equilibrium and we further assume
that each agent begins with identical quantities of bonds and capital, so that
Cjt = Ct;Kjt = Kt; Bjt = Bt; Pjt = Pt and hjt = ht. The �rst order conditions
give three behavioral equations for the private sector. First we have the IS curve

C��t =
�RtC

��
t+1

�t+1
(11)

which de�nes the �demand channel�of monetary policy. Second, the arbitrage
condition equates real return on bonds with real return of capital, net of the
depreciation rate:

Rt
�t+1

=

264
0@s 1

1��
t+1 (1� �)
C�t+1

1A
1��
�

+ 1� �

375 (12)

The real marginal cost st is given by

st =
C�t K

��
t h�t

(1� �) (1� � t)
=

C�t
MPLt (1� �)

(13)

and can be expressed in terms of the marginal product of labor net of taxes.
Finally, we have the Phillips curve describing the behavior of the in�ation rate

�t (�t � 1) = ��t+1 (�t+1 � 1) +
C��t

�
K��1
t h1��t

�
Kt� (1� � t)

 

�
st �

� � 1
�

�
(14)
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where ��1
� de�nes the inverse of the mark up. The model is closed with the

private sector resource constraint

bt +Kt+1 = Rt�1bt�1 + (1� �)Kt + (1� � t)
�
K��1
t h1��t

�
Kt � Ct; (15)

where bt denotes real bonds, the government budget constraint (8) and the mon-
etary and �scal rules (7), (9). We de�ne an equilibrium a sequence f�t; Ct;Kt; ht; st; � t; Rt; btg1t=0
such that (11)-(15) are satis�ed and the transversality conditions hold.

2.4 Model Calibration

In order to perform the nonlinear analysis of the model we must calibrate some
of its parameters. We �x the numerical values of those parameters that are less
controversial in the literature. We set � = 0:3, consistent with the cost share
of capital. Following Schmitt-Grohe and Uribe (2004), we set the steady state
tax rate �� = 0:2, consistent with the ratio of tax revenues over GDP for the US
over the years 1997-2001. We set the discount factor � equal to 0:99, implying
an annual discount rate of approximately 4%, and the depreciation of capital,
�; to 0:02. Finally, we set the price elasticity of demand � = 5, which imply
a mark up of 25%, consistent with the empirical �ndings of Basu and Fernald.
Our choice for � implies a somewhat highermark-up with respect to the rest of
the literature, where � can take a value as high a 115 . Nevertheless, our results
below are invariant to alternative values of �.
This leaves �ve other parameters to be calibrated. Two of them are related

to the structure of the economy : � and  . Di¤erent values of � are found
in the literature, ranging from 3 to 1=3. There is also disagreement about an
exact measure of price rigidity in the economy. Most of the literature assumes
a Calvo type nominal rigidity, allowing for a more direct comparison with the
data. Estimated models of nominal rigidities set the probability of not changing
prices between 0:66 (Sbordone, 2002) and 0:83 (Gali and Gertler, 1999). Our
choice of  ; a measure of the cost of changing prices in our model, is consistent
with this interval. From the linearized Phillips curve, derived in the Appendix,
we set  =

�Y �C�����s
(1���)(1��) , where � is the probability of not changing the price in

a Calvo type model of price rigidity. This choice of  implies that the linearized
Phillips curve is identical under our Rotemberg speci�cation and the Calvo
pricing model, independently of our assumption about price rigidity. In both
cases, the linearized Phillips curve becomes

�t = ��t+1 + �st

where the parameter � measures how changes in real marginal cost impact on
in�ation. The value of � clearly depends on the degree of price rigidity. In the
case of Calvo pricing we have

� =
(1� �) (1� ��)

�
(16)

5We thank the referee for pointing this out.
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where � is the probability of not changing the price, while in the case of Rotem-
berg pricing

� =
�Y �C����s

 
(17)

where  is the adjustment cost parameter. As a consequence of that any local
result in the Propositions is valid for both modelling assumption. Moreover, in
order to be consistent with most of the literature we are going to de�ne and
calibrate price rigidity in terms of � and set  so that (16) and (17) are the
same.
Notice that this version of the model is equivalent to assuming homogeneous

labor and capital markets. As shown in Woodford (2003) and Sveen and Weinke
(2004), assuming �rm-speci�c labor and capital markets increases in�ation per-
sistence, for a given level of price rigidity. That is

� =
(1� �) (1� ��)

�
A

where A < 1. Sveen and Weinke�s paper shows that the local results in this
paper would also hold in the case of �rm speci�c factor markets, if we allow for
a di¤erent interpretation of the parameters. More precisely, the same results are
obtained for lower values of � and therefore for a lesser degree of price rigidity.
The Calvo and Rotemberg pricing models are di¤erent in their nonlinear

components. Our choice of Rotemberg pricing simpli�es the nonlinear analy-
sis considerably. In fact, the fully nonlinear capital model under Rotemberg
pricing is four dimensional, including in�ation, consumption, marginal cost and
the capital stock, while under Calvo pricing it is six dimensional, as shown in
Schmitt-Grohe and Uribe (2004). The same holds true for the bonds modelin
section 3.2. Given that the higher order terms are di¤erent, the two models
might have di¤erent implications for global indeterminacy. In other words, the
global results discussed in the Propositions below may depend on the assump-
tions of Rotemberg pricing. We leave the analysis of the nonlinear Calvo model
for further research.
The remaining three parameters describe monetary and �scal policy. In

the sections below we discuss how the choice of these parameters a¤ects the
existence of multiple equilibria.

3 Active Monetary Policy Rules and Multiple
Equilibria

This section discusses the main result of the paper. An active policy rule might
not be su¢ cient to achieve the in�ation target and stabilize the economic sys-
tem. In fact, we show that multiple equilibria arise once we consider the global
dynamics of the model. In order to simplify the analysis and the exposition
of the results, we consider two cases. First, we discuss the model with capital,
abstracting from the �scal authority, i.e. no government liabilities and no tax-
ation. Second, we consider the model with the government and without capital
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accumulation. In later sections we point out that these two models share a very
similar source of multiple equilibria.

3.1 The Model with Capital

Let us assume that there is no �scal authority in the model. Then any of the
model�s perfect foresight solutions takes the following form

Zt+1 = F (Zt)

where Zt+1 = [Ct+1; st+1; �t+1;Kt+1] ; given the initial value for K0. The fol-
lowing proposition characterizes the equilibria of the model. In this section we
consider a monetary authority that responds only to the in�ation rate. This has
been advocated to be the (constrained) optimal policy by many authors; see for
example Rotemberg and Woodford (1997), Gali and Gertler(1999), Schmitt-
Grohe and Uribe (2004,a, b).

Proposition 1 Consider the model with capital only under the benchmark cal-
ibration. For each � (�) 2 (� (0:77) ; � (0:84)) there exists a ����� and ��

�
�+ such

that for 1 < �� < ��
�
�� and �� > ��

�
�+ the equilibrium is locally determi-

nate, and for �� 2
�
��
�
��;

��
�
�+

�
the equilibrium is locally indeterminate. Fur-

thermore, for an interval S1+ =
�
��
�
�+;

��
�
�+ + "

�
; " > 0, there exists a closed

invariant curve which bifurcates from the steady state as �� crosses ��
�
�+ from

below , and for initial conditions of capital k0 close to this invariant curve
, there exists a continuum of initial values fc0; x0; �0g for which the equilib-
rium trajectories converge to the invariant curve6 . In addition, for an interval

S2+ =
�
��
�
��;

��
�
�� + "

�
; " > 0 there is a "determinate" invariant curve bifurcat-

ing from the steady state as �� crosses ��
�
��, so that given an initial condition for

capital k0 close to the invariant curve, there exists initial values of fc0; x0; �0g
for which the equilibrium trajectories converge to the invariant curve7 .

Proof. See Appendix.
Proposition 1 shows that multiple equilibria exist in the case of an active

policy rule that achieves local uniqueness or the local determinacy of the equilib-
rium (cf. Carlstrom and Fuerst (2004)). This clearly indicates the importance
of considering the full nonlinear solution of the model.

6On the invariant curve the dynamics of the variables may be periodic if the ratio of the
angle of rotation to pi is rational. Otherwise the dynamics remain on the curve but will not
be exactly periodic. For example in the simple degenerate case of a two dimensional linear
system with complex roots a � bi of unit modulus, the dynamics of (x1;x2) is given by the

map
�
x1
x2

�
!

�
x1 cos �t+ x2 sin �t
x1 cos �t� x2 sin �t

�
with period 2pi=� where � = tan�1 (b=a) ; but

2pi=� may be irrational.
7Determinate invariant curves, like locally determinate steady states, are particularly in-

teresting from the perspective of learnability. We leave this for further research.
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Figure 1

Figure (1) shows the combination of �, the probability of not resetting the
price in a Calvo model, and �� that delivers local determinacy and indetermi-
nacy. Notice �rst that the relation between � and �� is a correspondence with
two �branches�. Also, above the dotted line the Taylor Principle is satis�ed. For
a given level of price rigidity, local determinacy can be achieved by choosing
a su¢ ciently aggressive response to in�ation or by a very mild response very
close to one. For intermediate values of �� indeterminacy occurs, even though
the Taylor Principle is satis�ed. Proposition 1 states that under the benchmark
calibration, for parameter values in a neighborhood above both the lower and
the upper branches, there are equilibrium trajectories that converge to and cycle
on an invariant curve that bifurcates from the steady state.
Choosing a value of �� which is close to the lower branch does not seem

a realistic option. First, the stability corridor is rather small, since �� must
be higher than one. Second, given the uncertainty about �true�parameter val-
ues it likely that the choice of �� falls in the local indeterminacy region. For
this reason, from a policy perspective the upper branch is is the most realistic
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parameter combination on which to focus the analysis.
One possibility for the central bank however may be to choose extreme values

of �� so the chosen parameter is su¢ ciently distant from the bifurcation value,
as shown in Figure (1). But this could lead to severe instability. In fact, a small
mistake in controlling in�ation would induce extreme volatility in the policy
instrument and therefore output and in�ation8 .
As is clear by Proposition (1), achieving local determinacy might not be

su¢ cient to avoid global indeterminacy. Figure (2) shows a possible equilibrium
for the benchmark calibration, where in�ation, output and the interest rate
converge to a cycle. Note however that the stable manifold of the invariant
curve (including the direction along the curve), is of one less dimension than
the dimension of the system. Since only one variable, k; is predetermined, the
system is globally indeterminate. Theoretically in our proofs, the existence
of an invariant curve with a stable manifold of dimension three is established
by computing the "Lyapunov" exponent9 . If this exponent is negative, the
dimension of stable manifold corresponds to the number of roots inside the
unit circle other than the two complex roots crossing the unit circle at the
bifurcation point, plus two. (See the proof of Proposition (1) in the appendix).
In simulations however, approximation errors can never make it possible for us
to stay on the stable manifold that eliminates divergent trajectories. Thus, as
Figure (2) makes clear, we can converge towards and stay arbitrarily close to
the invariant curve for a very long time, but eventually, due to approximation
errors, one of the variables, notably capital, will start to diverge, pulling along
the other variables as well. In the next section, where we analyze the model with
bonds but without capital, the stable manifold of the invariant curve will be of
full dimension, thereby avoiding this computational problem with simulations.

8For further comments on this, see Svensson and Woodford (2003).
9Lyapunov exponents, just like characteristic roots in the case of steady states, determine

the dimension of the local stable and unstable manifolds of the invariant curve bifurcating
fromthe steady state.
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Figure 2

3.1.1 The economic intuition of the local and global indetermina-
cies

We now turn to an intuitive economic explanation of Proposition 1. We be-
gin, for purposes of exposition, with a much simpler model of the Phillips
curve. We assume that marginal costs depend positively on the interest rate,
maybe because wages are paid in advance of production, or because real bal-
ances held by �rms a¤ect output by reducing the real cost of transactions (see
Benhabib,Schmitt-Grohe and Uribe (2000)). Under this assumption monetary
policy aimed at controlling the nominal interest rate also operates directly on
the marginal costs, through the so called "cost channel." In such a model, the
Phillips curve is

�t = ��t+1 + �s (yt; R(�t)) sy; s� > 0 (18)

Here � is the discount factor, � is the parameter positively related to the
rigidity of prices and s(:) represents marginal costs that depend, through the
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interest rate and the monetary policy rule, on in�ation. Let us �rst consider the
case where s� = 0 and no cost channel exists. An increase in expected in�ation10

next period increases current in�ation and, because of an active Taylor rule,
increases the interest rate. Aggregate demand falls, decreasing the marginal cost
of production and putting downward pressure on current in�ation. From (18),
current in�ation increases by less than expected in�ation. For the initial increase
in expected in�ation to be self-ful�lling, a further rise in expected in�ation in
the subsequent period is needed, which, as we iterate forward, would result in
the divergence of in�ation, violating transversality conditions. In other words,
the existence of a cost channel e¤ect is necessary to have indeterminacy in this
model.
If s� > 0, the initial increase in in�ation expectations can lead to an increase

in the marginal cost and, if the cost channel is su¢ ciently strong, to a larger
increase in actual in�ation. In fact, the increase in the interest rate puts upward
pressure on the marginal cost, contributing to a further increase in the current
in�ation rate. In this case in�ation reverts back to the steady state. Expecta-
tions are self-ful�lling and the the in�ation path is an equilibrium, giving the
indeterminacy result11 .
While the process generating local and global indeterminacies in a model

with capital but without the "cost channel" is related to the mechanism de-
scribed above, it is more complicated. Consider instead a similar thought ex-
periment, where we start with an increase in expected in�ation, and trace the
dynamic e¤ects through the Phillips curve of equation 14. Note that the sec-
ond term on the right of the Phillips curve consists of  �1; measuring price
rigidity, a composite term C��t

�
K��1
t h1��t

�
Kt� (1� � t) that captures output

or absorption, and the marginal cost term given in equation 13 : The impact
e¤ect of a rise in expected in�ation is the sum of two e¤ects: the �rst e¤ect is
a rise in expected in�ation which raises current in�ation by a factor of � < 1; a
direct e¤ect. The second e¤ect under an active Taylor rule is a rise in expected
in�ation that would raise the real rate, which would then generate a drop in
current consumption, as well as a rise in the rate of growth of consumption
via the IS curve, or the Euler equation. A higher interest rate would require
a higher marginal value product of capital next period, which in part would
come about through a decline in the capital stock for the next period, implying
a lower investment level today. Thus output today would decline, and, given
the current stock of capital, so would the level of employment ht: The result
would be a fall in current consumption, employment and marginal cost st; all
of which dampen the rise in current in�ation, so that on account of both the
direct and indirect e¤ects of expected in�ation, current in�ation rises by less
than expected in�ation. Following the same logic as in the example based on
the the simpler "cost channel" model above, if the expected in�ation were to be

10Since there is no uncertainty in our example we are in a perfect foresight world, and
expected in�ation corresponds to realized in�ation.
11 It is also possible for s� (�) to be so large that a rise in expected in�ation causes a decline

in current in�ation giving rise to either convergent or divergent oscillations, but we will not
pursue this further since our focus is to shed light on the model with capital.
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self-ful�lling, a rising in�ation rate would require expected in�ation to rise by
even more in each subsequent period, resulting a divergent trend in in�ation.
However the fall in investment and capital, together with the recovery of grow-
ing consumption, would then begin to raise employment and the marginal cost
s in the subsequent periods, eventually reversing the direction of in�ation, and
resulting in oscillatory dynamics. Such oscillations can either be divergent or
convergent. The strength or the amplitude of oscillations will depend, among
other things, on  �1, which measures the rigidity of prices. If prices are very
�exible and  is very low, the e¤ect of the second term, embodying output and
marginal cost responses, is signi�cantly magni�ed, and we get divergent oscil-
lations. If  is very high and prices are very rigid, then output and marginal
cost responses become insigni�cant for current in�ation, so that only the direct
e¤ects of expected in�ation are operational, and again, they lead to divergence
since � < 1. In some intermediate range for  we obtain convergent oscillations
and local indeterminacy.
So far the above analysis is local, in the sense that the dynamic e¤ects con-

sidered correspond to the dynamics of a system linearized around a steady state.
Our particular interest is in the more global analysis of the locally determinate
case, where the dynamics of in�ation and other variables are characterized by
locally divergent oscillations, so that higher order terms start to dominate the
dynamics as we move further away from the steady state. These higher or-
der terms may either reinforce the divergence for the range of the parameters
that corresponds to local determinacy, or they may contain it, resulting in con-
vergence to a cycle (or more precisely to a circle), so that local determinacy
translates into global indeterminacy.
Our analysis of the Lyapunov exponents in the appendix is a formal inves-

tigation of this, and we �nd, for the plausible parameter ranges where we have
local determinacy, that we also have a continuum of initial conditions, arbitrarily
close to the steady state, giving rise to trajectories converging to a circle. Since
dynamics converging to a circle satisfy transversality conditions,we have global
indeterminacy. The forces that contain the local divergence are in fact related
to the second and higher order terms in the expansion of the Phillips curve12 :
divergence of capital, consumption and labor away from the steady state trig-
gers the containment response in marginal costs, and results in convergence to
equilibrium cycles.
For further intuition of the global indeterminacy result, consider a sudden

increase in in�ation expectations. If the economy were at the steady state,
we know from the linearized model that the the only path for in�ation which is
consistent with the initial increase in expectations is an increasing in�ation rate.
But as in�ation moves su¢ ciently far from the steady state, the nonlinearities
in the Phillips curve start to operate. The increase in the marginal cost has
a more pronounced e¤ect on actual in�ation, which now becomes higher than
in�ation in the subsequent periods, following the same intuition as in the case of

12 In fact our simulations con�rm that if we arti�cially eliminate higher order terms from
the Phillips curve equation only, the system remains divergent.
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local indeterminacy. Therefore, in�ation reverses course back toward the steady
state. But as in�ation is close enough to the steady state, repelling forces drive
it away the cycle emerges.

3.2 The Model with Bonds

In this section we discuss the model with only bonds, and we show how most of
the results obtained for the capital model also hold in this case.

3.2.1 Constant real bonds rule.

Let us consider the model with the constant real bonds rule. This is the case
where �1 = �0 = 0 and �2 = 1 in equation (9). The solutions of models with
bonds only can be expressed as

Zt+1 = ~F (Zt)

where Zt+1 = [yt+1; �t+1; �t]. The following proposition discusses the existence
of multiple equilibria.

Proposition 2 Consider the model with bonds and the constant bonds rule un-
der the benchmark calibration. For each � (�) 2 (� (0:8385) ; � (0:95)) there exists
a ��

�
�� and ��

�
�+ such that for 1 < �� < ��

�
�� and �� > ��

�
�+ the equilibrium

is locally determinate, and for �� 2
�
��
�
��;

��
�
�+

�
the equilibrium is locally in-

determinate. Furthermore, for an interval S1+ =
�
�̂
�

�+ � �; �̂
�

�+

�
; " > 0, "de-

terminate" invariant curve bifurcating from the steady state as �� crosses �̂
�

�+,
so that given an initial condition for ��1 close to the invariant curve, there is
a set of initial values of fc0; �0g for which the equilibrium trajectories converge
to the invariant curve. In addition, if � (�) 2 (� (0:8385) ; � (0:89)) for an in-
terval S2+ =

�
�̂
�

��; �̂
�

�� + �
�
; " > 0 there is a "determinate" invariant curve

bifurcating from the steady state as �� crosses �̂
�

��, so that given an initial con-
dition for ��1 close to the invariant curve, there is a set of initial values of
fc0; �0g for which the equilibrium trajectories converge to the invariant curve.

If � (�) 2 (� (0:89) ; � (0:95)) for an interval S1+ =
�
�̂
�

�� � �; �̂
�

��

�
; " > 0,

there exists a closed invariant curve which bifurcates from the steady state as

�� crosses �̂
�

�� from above , and for initial conditions for ��1 close to this in-
variant curve, there exists a continuum of initial values fc0; �0g for which the
equilibrium trajectories converge to the invariant curve.

Proof. See Appendix.

The model with balanced budget gives qualitative results identical to the
model with capital. Figure (3) shows the determinacy correspondence, as in the
case of capital.
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Figure 3

The intuition for the result follows the same logic as for the capital model.
Consider an increase in in�ationary expectations. The central bank reacts by
increasing the real interest rate. This increases the cost of servicing the debt
and thus triggers an increase in taxes. Since taxes are distortionary, from (13)
the marginal productivity of labor decreases and thus marginal cost goes up.
Once again the decrease in aggregate demand and the increase in the marginal
cost have opposite e¤ects on the in�ation rate, opening the door for multiple
equilibria, as described for the capital model.
But the nonlinear implications of the model are di¤erent. In fact, if the

central bank manages to choose �� to be in the locally determinate region, we
can conjecture that no other equilibria exist, i.e. the steady state is �globally�
unique. The only exception is for values of �� close to the lower branch bi-
furcation values, which are not that interesting from a policy point of view, as
discussed above. Global uniqueness is a promising feature of this �scal rule. As
shown in the next section, however, a liability targeting rule does induce global
indeterminacy.
Summing up, the key to the local result in the Proposition is the link between

the nominal interest rate and its e¤ects on the marginal cost of production. In
the case of capital the increase in the nominal rate increases the return on
capital, which in turns decreases the capital stock, a¤ecting labor productivity.
In the bonds case, the increase in the nominal rate increases the return on bonds
and thus the cost of servicing the debt. This a¤ects the marginal product of
labor via the tax increase necessitated by the tax rule.
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3.2.2 Targeting rules for bonds

The case of debt targeting corresponds to setting �2 = 0 in equation (9). Debt
targeting introduces another policy parameter, �1. In this section we discuss the
interplay between monetary and �scal policy and its consequences for multiple
equilibria. To begin we consider di¤erent values for �1 and how this choice
a¤ects the role of monetary policy in generating multiple equilibria. We consider
two cases. First, a low value for �1: the �scal authority is assumed to adjust
taxes gradually to changes in total liabilities. Second, a higher value of �1 which
denotes a more aggressive stabilization behavior.

Proposition 3 Consider the model with bonds and targeting rule under the
benchmark calibration.
(i), Let the �scal stance be mild: �1 = 0:4: For each � (�) 2 (� (0:649) ; � (0:95))

there exist a ��
�
�� and ��

�
�+ such that for 1 < �� < ��

�
�� and �� > ��

�
�+ the

equilibrium is locally determinate, and for �� 2
�
��
�
��;

��
�
�+

�
the equilibrium is

locally indeterminate. Furthermore, for intervals S2+ =
�
�̂
�

�+ � �; �̂
�

�+

�
; and

S2+ =
�
�̂
�

�� + �; �̂
�

��

�
, " > 0 there is a "determinate" invariant curve bifurcat-

ing from the steady state as �� crosses �̂
�

�+ and �̂
�

��, so that given an initial
condition for L0 close to the invariant curve, there is a set of initial values of
fc0; �0g for which the equilibrium trajectories converge to the invariant curve.
(ii), Let the �scal stance be aggressive: �1 = 1:7: For each � (�) 2 (� (0:45) ; � (0:95))

there exists a ��
�
�� and ��

�
�+ such that for 1 < �� <

��
�
�� and �� > ��

�
�+ the equi-

librium is locally determinate, and for �� 2
�
��
�
��;

��
�
�+

�
the equilibrium is locally

indeterminate. Furthermore, for an interval S1+ =
�
�̂
�

�+; �̂
�

�+ + "
�
; " > 0,

there exists a closed invariant curve which bifurcates from the steady state as ��
crosses �̂

�

�+ from below, and for initial conditions of L0 close to this invariant
curve , there exists a continuum of initial values fc0; �0g for which the equilib-
rium trajectories converge to the invariant curve. In addition, for an interval

S2+ =
�
�̂
�

�� + �; �̂
�

�+

�
; " > 0 there is a "determinate" invariant curve bifur-

cating from the steady state as �� crosses �̂
�

��, so that given an initial condition
for ��1 close to the invariant curve, there is a set of initial values of fc0; �0g
for which the equilibrium trajectories converge to the invariant curve.

Proof. See Appendix.

As the Proposition shows, there is an important di¤erence in the two �s-
cal approaches which would not be detected if we restricted the analysis to the
linearized model. In fact, a mild response to variations in total government lia-
bilities may guarantee a globally unique equilibrium, provided monetary policy
is chosen to guarantee local determinacy. An active monetary policy may not
be enough to stabilize the economy, if �scal policy is aggressive. In fact, the
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Proposition shows that multiple equilibria exist even if the equilibrium is locally
determinate. Figure (4) shows a possible equilibrium when monetary policy is
active and �scal policy is aggressive. In the Appendix we show the determinacy
correspondences for both case (a) and (b).

Figure 4

We now �x the coe¢ cient of the monetary policy rule �� and explore the
existence of multiple equilibria as we vary the �scal parameter.

Proposition 4 Consider the model under benchmark calibration and �� =

1:5:For each � (�) 2 (� (0:745) ; � (0:95)) there exist 1 � � < ��1 such that for
1 � � < �1 < ��1 the equilibrium is locally determinate, and for �1 > ��1+ the
equilibrium is indeterminate. Moreover,

(a) If � 2 (� (0:7487) ; � (0:777)) ; for an interval S1+ =
�
�̂
�

1 � �; �̂
�

1

�
; " > 0,

there exists a closed invariant curve which bifurcates from the steady state as

�1 crosses �̂
�

1 from above, and for initial conditions of b0 close to this invariant
curve , there exists a continuum of initial values fc0; �0g for which the equilib-
rium trajectories converge to the invariant curve.
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(b) if � 2 (� (0:745) ; � (0:7486)) [ (� (0:778) ; � (0:95)) ;or an interval S2+ =�
�̂
�

1; �̂
�

1 + �
�
; " > 0 there is a "determinate" invariant curve bifurcating from

the steady state as �� crosses �̂
�

1, so that given an initial condition for b0 close
to the invariant curve, there exists initial values of fc0; �0g for which the equi-
librium trajectories converge to the invariant curve.

Proof. See Appendix.

For values of �1 which are less than �1 + � no equilibrium exists. As we
increase �1 indeterminacy arises. Figure 5 shows the determinacy area as a
function of the �scal parameter and the measure of price rigidity. The function
��1 is de�ned in the Appendix.
Considering global indeterminacy, if �1 is chosen to be very aggressive mul-

tiple equilibria may disappear. Notice that the result is obtained for values of
�1 that make �scal policy active, in the sense of Leeper (1991). Choosing both
�scal and monetary policy active may acheive a unique equilibrium.

Figure 5
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3.3 Sensitivity Analysis

The results in the Propositions above refer to a benchmark calibration, which is
broadly consistent with the literature. Nevertheless there is uncertainty about
some of the calibrated parameters, especially �: It is therefore worth investigat-
ing how sensitive our results are with respect to this parameter. For the case of
capital, chhosing � away from the benchmark value of �� = 1:5 does not a¤ect
the global results. Similarly, as pointed out earlier, our results and analysis
are invariant to alternative choices of �: In particular, the multiple equilibria
continue exist for the parameter space that yields local determinacy.
In the case of bonds, � a¤ects global indeterminacy. For the model with

the targeting rule, low values of � induce global indeterminacy also in the case
where �1 = 0:4: Hence, the possibility that a gradual adjustment to changes in
bonds can rule out global indeterminacy is not robust to di¤erent choices of �:
Also, in the model with the constant bond rule, high values of � (i:e:� = 3)
imply that for a large portion of the parameter space global indeterminacy can
arise, thus qualifying the results in Proposition (2).
Summing up, the results are somewhat sensitive to di¤erent choices of �,

but also indicate that for a broad set of parameter values global indeterminacy
is an issue in this type of models.

3.4 Equivalence between the bond only and capital only
models

In the previous sections we showed that the mechanism generating multiple
equilibria is the same in the two models, and arises from the direct e¤ects of
monetary policy on the marginal cost. In e¤ect, the result holds whenever the
model displays a su¢ cient link between asset accumulation and marginal cost.
Changes in the monetary instrument a¤ect the nominal interest rate and, via
arbitrage conditions, changes the path of asset accumulation. In both models
the decline in the asset increases the marginal cost. In the case of capital this
occurs because the decline in capital is followed by the recovery of consumption
and employment. In the case of bonds this happens as the �scal authority
increases taxes to respond for an increased cost in servicing the debt.
The equivalence between the two models is best understood by comparing

the linearized equation for the marginal cost for the model with capital and
the model with constant bonds. Consider the model with capital and set � (the
depreciation) equal to zero. We can rewrite the log linearized arbitrage equation
for capital as:

ŝt+1 =
�

1� ����t �
�

1� � �t+1 + (1� �)�ĉt+1

The Euler equation for consumption and the Phillips curve are exactly the same
as for the case with bonds. Consider now the equation that we obtain combining
the marginal cost with the evolution of taxes for the case of balanced budget
and bonds. We get
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ŝt =
�

1� ����t�1 �
�

1� � �t +
�
(1� �)� + (� � �)

1� �

�
ĉt

Note that � measures how marginal cost is a¤ected by changes in distor-
tionary taxation, while � in the model with capital measures the share of capital,
or how marginal cost is a¤ected by changes in the return to capital. If � = �;
then the two equations are exactly the same.

3.5 The Role of the Output Gap

Previous results indicate that active monetary policy might generate policy in-
duced �uctuations that are welfare reducing. Evaluating the performance of
monetary policy rules by restricting the attention to the locally unique equi-
librium, even if the analysis is conducted on a nonlinear approximation of the
model�s steady state, might lead to misleading results. As mentioned above,
many authors conclude that the optimal policy rule (within the class of simple
rules) puts a zero coe¢ cient on the output gap.
In contrast, our results indicate that, unless extreme monetary and �scal

policies are adopted, a policy rule that responds only to actual in�ation can
lead to welfare reducing outcomes. Moreover, as Figure (6) shows for the model
with bonds, analysis of the full nonlinear model shows some bene�t may arise
from responding to output. In fact, a su¢ cient response to the output gap
helps eliminate local indeterminacy: a su¢ ciently aggressive response shifts the
�indeterminacy� frontier southward. A higher degree of price rigidity is now
required for local indeterminacy to occur, for a given combination of �scal and
monetary policy.
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Figure 6

By reacting su¢ ciently strongly to output, the indeterminacy region shrinks
to a parameter region that implies far too much rigity than observed in actual
economies13 . As a caveat, the response to output must be non-negligible. As
Figure (7) shows if the monetary authority does not respond su¢ ciently to
output, the situation can actually get worse! In fact the frontier shift inwards.

13 In a model with money, an excessive response to the output gap might lead to local
indeterminacy, as shown by Eusepi (2003) and SU (2004). Nevertheless, numerical simulations
(under the benchmark calibration) show that with a coe¢ cient as low as 0.3 produces a
su¢ cient shift in the local indeterminacy frontier to make indeterminacy unplausible .
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Figure 7

In the model with capital, numerical simulations show that a very small
response to output shift widely the indeterminacy frontier. Depending on the
calibration, a response as small as 0.1 is indeed su¢ cient to guarantee a locally
unique equilibrium. Naturally, di¤erent and more complex models environment
may require stronger responses.
Notice again that the above results have only local validity. Global equilibria

still exists for parameter combinations that guarantee local determinacy north
of the frontier, threatening economic instability. In fact, it can be shown that
the global results discussed in the previous sections for both the model with
capital and bonds remain valid, depsite a positive response to output.
Summing up, adopting a monetary policy rule that responds to output may

reduce welfare if the economy is at the locally unique equilibrium induced by
the minimum state variable solution, but if we take into account the possibility
of other welfare-reducing equilibria, a response to output may turn out to be
stabilizing, and therefore welfare improving. Nevertheless, the caveat is that
this policy rule does not necessary guarantee a globally unique equilibrium.
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4 Appendix

4.1 Model Solution

The consumer-producer problem is described as follows

max
Bjt;Kjt+1;hjt;Pjt

1X
s=t

�s�t

8>>><>>>:
�
�Bjs

Ps
+ Rs�1

�s

Bjs�1
Ps�1

+ (1� � s)
�
Pst
Ps

�1��
as �Kjs+1 + (1� �)Kjs

�1��
1� �

�hjs �
 

2

�
Pjs
Pjs�1

� 1
�2
+ �s

"
K�
jsh

1��
js �

�
Pjs
Ps

���
as

#)

given Bj;t�1;Kj;t and the transversality condition. The �rst order condition for
Bj;t is equation (11). The �rst order condition for Kj;t+1 is the equation

C��jt = �C��jt+1
�
�t+1C

�
jt+1�K

��1
jt+1h

1��
jt+1 + 1� �

�
:

The �rst order condition with respect to hours worked is

st =
�t

C��jt (1� � t)
=
C�jt (1� �)K�

t h
��
t

(1� � t)

where st is the real marginal cost. Finally, the �rst order condition with respect
to the price gives the Phillips curve (14). We assume a symmetric equilibrium
where all agents choose the same consumption/production paths.

4.2 Local Determinacy: The Linearized Models

4.2.1 Model with Capital

By log-linearizing the solution, we get the following equations for consumption,
marginal cost and in�ation:

ĉt = �
1

�
���̂t +

1

�
�̂t+1 + ĉt+1 (19)

ŝt+1 = �
(�t+1 � ���t) ���1�

��1 � 1 + �
� + � (1� �) ĉt+1

�t = ��t+1 + �ŝt

where

� =
�Y �C����s

 

measures the degree of nominal rigidity.
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A shown by Carlstrom and Fuerst (2004) the capital equation is decoupled
from the remaining equations in the system. They also show that the coe¢ cient
on the di¤erential dKt+1=dKt > 1 for every parameter con�guration. Hence,
the local determinacy of the system is decided by the local stability properties
of the following sub system

AK0

24 ct+1
�t+1
st+1

35 = AK1

24 ct
�t
st

35
where

AK0 =

264 1 1
� 0

0 � 0

�� (1� �) ��1�

(��1�1+�)
1

375

AK1 =

264 1 1
��� 0

0 1 ��
0 ���

�1�

(��1�1+�)
0

375 :
Therefore, the Jacobian becomes

JK =
�
AK0

��1
A1 (20)

Given that capital is predetermined, local determinacy requires that two
eigenvalues of (20) to be outside the unit circle and one inside.

Proposition 1 Consider the model with capital only under the benchmark cal-
ibration. For each � (�) 2 (� (0:77) ; � (0:84)) there exists a ����� and ��

�
�+ such

that for 1 < �� < ��
�
�� and �� > ��

�
�+ the equilibrium is locally determi-

nate, and for �� 2
�
��
�
��;

��
�
�+

�
the equilibrium is locally indeterminate. Fur-

thermore, for an interval S1+ =
�
��
�
�+;

��
�
�+ + "

�
; " > 0, there exists a closed

invariant curve which bifurcates from the steady state as �� crosses ��
�
�+ from

below , and for initial conditions of capital k0 close to this invariant curve
, there exists a continuum of initial values fc0; x0; �0g for which the equilib-
rium trajectories converge to the invariant curve. In addition, for an interval

S2+ =
�
��
�
��;

��
�
�� + "

�
; " > 0 there is a "determinate" invariant curve bifur-

cating from the steady state as �� crosses ��
�
��, so that given an initial condi-

tion for capital k0 close to the invariant curve, there is a set of initial values
of fc0; x0; �0g for which the equilibrium trajectories converge to the invariant
curve.

Proof. The Jacobian JK can be computed as:
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JK =

264 1 1
��� �

1
��

1
�� �

0 1
� � 1

� �

� (1� �) ��

�
1� � + � 1

1��(1��)

�
+�c �c

375
where c = (��1�1+�+����)

(1��(1��)) :The characteristic equation is

P (�) = �3 + a2�
2 + a1�+ a0 (21)

We will start by using the necessary and su¢ cient conditions provided by Wood-
ford (2003) for P (�) to have two roots outside and one root inside the unit circle.
The three mutually exclusive conditions are, either:

1: P (�1) < 0 and P (1) > 0 (22)

or

2: P (�1) > 0 and P (1 ) < 0 and ( a0)
2 � a0a2 + a2 � 1 > 0 (23)

or

3: P (�1) > 0 and P (1 ) < 0 and ( a0)
2�a0a2+a2�1 < 0 and ja2j > 3

(24)
We can show, by evaluating the characteristic equation 21 of JK in our model,
that P (�1) > 0; and if �� > 1; that P (1) < 0: So we have to consider only
cases 2 and 3. For our benchmark parametrization, the values of �� and �
such that ( a0)

2 � a0a2 + a2 � 1 = 0 must satisfy
b2 (�)�

2
� + b1 (�)�� + b0 (�) = 0 (25)

where

b2 (�) =
�2�

� (1� � + ��)

b1 (�) = �
� (
2 + �
1)

� (1� � + ��) + 
1


1 = 1� � + �� + �� � ��� > 0

2 = 1 + �� � �2 + �2� > 0

b0 (�) = � +
1

�
[(1� �) (1� � + ��)]

Consider the region of � (�) 2 (� (0:77) ; � (0:84)) = S:Given � 2 S ; we can solve
for �� that satis�es 25. The two solution branches are given by

�̂
�

�1 =
�b1 (�)�

q
b1 (�)

2 � 4b2 (�) b0 (�)
2b2 (�)

> 1 (26)

�̂
�

�2 =
�b1 (�) +

q
b1 (�)

2 � 4b2 (�) b0 (�)
2b2 (�)

> 1 (27)
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(see Figure 1). For our benchmark parametrization, we also compute that for
� 2 S; ja2j < 3: Thus, focusing on the �rst branch, for small " > 0 and a

pair
�
�̂
�

�+ + "; �
�
; � 2 S; 22 holds and 21 has two roots outside and one root

inside the unit curve. For
�
�̂
�

�� � "; �
�
on the other hand, neither 22; nor 23, nor

24 holds: in particular we have P (�1) > 0; P (1 ) < 0; ( a0)2� a0a2+ a2� 1 <
0 and ja2j < 3: Thus as ���1 crosses from S1� =

�
�̂
�

�1 � "; �̂
�

�1

�
into S1+ =�

�̂
�

�1 ; �̂
�

�1 + "
�
; we must have a change in stability, and the modulus of pair of

complex roots must cross unity from below, since P (�1) > 0 and P (1 ) < 0 for
��1 > 1:This is the standard case of a discrete time Hopf bifurcation, provided
certain additional conditions hold (see Kuznetsov (1998),chapter 4, pages 125-
137 and 183-186, chapter 5 ).

Figure 8

To check these conditions we must compute the related Lyapunov exponent
for each � 2 S (see Figure 8) for the full four dimensional non-linear system.
Since the Lyapunov exponent is negative, the invariant curve for � 2 S1+ has
a three dimensional stable manifold. It inherits one of the stable real roots of
of the linearized system, and the two unstable complex roots of the linearized
system induce an additional a two dimensional stable manifold for the bifurcat-
ing invariant curve. Thus the invariant curve has a locally stable manifold of
dimension 3, including the dimension along the curve14 . We note however that

14As it is clear from Carstrom and Fuest (2003), the parameter � does not play any role
for local determinacy. But it could still a¤ect the criticality of the bifurcation through the
higher order terms. Given our uncertainty about this parameter, it is interesting to check the
robustness of the result for di¤erent values of �.
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the full system is four dimensional and includes capital, but the linearization at
the steady state decouples into a separate three dimensional system, and an ad-
ditional equation for the local dynamics of capital. Therefore when we simulate
the four dimensional non-linear system, the invariant curve bifurcates with a
three dimensional stable manifold in a four dimensional space.
For the second branch, the argument for the Hopf bifurcation is identi-

cal, except for one di¤erence. As ���� crosses from S2� =
�
�̂
�

�2 � "; �̂
�

�2

�
into

S2+ =
�
�̂
�

�2 ; �̂
�

�2 + "
�
; we have a change in stability, and the modulus of pair

of complex roots must cross unity this time from above: increasing ���� moves
us from the locally determinate to the locally indeterminate region (see Figure
1 ). Furthermore the associated Lyapunov exponent is now positive (see Figure
8). This implies that there is another invariant curve that lies in the locally

indeterminate region S2+ =
�
�̂
�

�2 ; �̂
�

�2 + "
�
: This curve is now repelling, or de-

terminate, in the sense that within the four dimensional space, it has a one
dimensional stable manifold, but it surrounds a locally indeterminate steady
state.

4.2.2 Model with Bonds: Constant Liability Rule

In this model government liabilities (i.e. government bonds) are constant in
equilibrium. The dynamics of the economy is described by the tax rule, the
consumption equation (19) and by the Phillips curve. The linearized tax rule is

�̂ t = �ŷt +
1

(1� �) (���t�1 � �t) (28)

which expresses a link between past in�ation (via Taylor rule) and the current
amount of distortionary taxes. The Phillips curve includes now taxes, because
they a¤ect the marginal cost. We get

�t = ��t+1 + �

�
� (1� ��) + 
 (1� ��)

(1� �) � (1� ��)
�
ŷt +

���

(1� ��) �̂ t: (29)

By inserting (28) in (29) we get the in�ation equation

�t = ~��t+1 + ��ŷt +
�����

1� � + ��� �t�1

where

~� =

�
� (1� �)
(1 + ���)� �

�
� =

�
� (1� ��) + 
 (1� ��)

(1� �) � 1
�
:
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Local determinacy depends on the stability properties of the system

AC0

24 ct+1
�t+1
�t

35 = AC1

24 ct
�t
�t�1

35
where

AC0 =

24 1 1
� 0

0 ~� 0
0 0 1

35

AC1 =

24 1 1
��� 0

��� 1 � �����
1��+���

0 1 0

35
Local determinacy requires that the Jacobian

JC =
�
AC0
��1

AC1

has two eigenvalues outside the unit circle and one eigenvalue inside.

Proposition 2 Consider the model with bonds and constant bonds rule under
the benchmark calibration. For each � (�) 2 (� (0:8385) ; � (0:95)) there exists a
��
�
�� and ��

�
�+ such that for 1 < �� <

��
�
�� and �� > ��

�
�+ the equilibrium is

locally determinate, and for �� 2
�
��
�
��;

��
�
�+

�
the equilibrium is locally indeter-

minate. Furthermore, for an interval S1+ =
�
�̂
�

�+ � �; �̂
�

�+

�
; " > 0, "determi-

nate" invariant curve bifurcating from the steady state as �� crosses �̂
�

�+, so
that given an initial condition for ��1 close to the invariant curve, there is a
set of initial values of fc0; �0g for which the equilibrium trajectories converge
to the invariant curve. In addition, if � (�) 2 (� (0:8385) ; � (0:89)) for an in-
terval S2+ =

�
�̂
�

��; �̂
�

�� + �
�
; " > 0 there is a "determinate" invariant curve

bifurcating from the steady state as �� crosses �̂
�

��, so that given an initial con-
dition for ��1 close to the invariant curve, there is a set of initial values of
fc0; �0g for which the equilibrium trajectories converge to the invariant curve.

If � (�) 2 (� (0:89) ; � (0:95)) for an interval S1+ =
�
�̂
�

�� � �; �̂
�

��

�
; " > 0,

there exists a closed invariant curve which bifurcates from the steady state as

�� crosses �̂
�

�� from above , and for initial conditions for ��1 close to this in-
variant curve, there exists a continuum of initial values fc0; �0g for which the
equilibrium trajectories converge to the invariant curve.

Proof. The Jacobian JC can be computed as:
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JC =

2664
(��+��)
��

(~����1)
~��

����

�~�(����+1)

���
�

~�
�1 ����

~�(����+1)
0 1 0

3775 :
The characteristic equation is

P (�) = �3 + a2�
2 + a1�+ a0 (30)

and, as in Proposition (1), we make use of Woodford (2003). By evaluating the
characteristic equation we obtain

P (1) =
(�� � 1) ��

��
> 0 if �� > 0

and

P (�1) = �
�
2� + ��+ 2��� � ���+ ���� + 2����� � ����� � 2��2

�
�� (1� �) < 0

As in the capital model, we have to consider only cases 2 and 3 in Proposition
(1). The values of �� and � such that ( a0)

2 � a0a2 + a2 � 1 = 0 must satisfy

�2� + b1 (�)�� + b0 (�) = 0 (31)

where

b1 (�) =

�
��� �� + ��� � ���� 2�2�+ �3�+ ����� ��2�

�
�2��

b0 (�) =
�� (� � 1)2 (1� �) + (1 + ��)� (1� �)

��2�2

Notice that imposing � = �; � = 1; (31) takes the same form as in the case of
the capital model with � = 0 (even though � has di¤erent values). Consider the
region of � (�) 2 (� (0:872) ; � (0:95)) = S: Given � 2 S ; we can solve for ��
that satis�es 31. The two solution branches are given by

�̂
�

�� =
�b1 (�)�

q
b1 (�)

2 � 4b0 (�)
2

> 1 (32)

�̂
�

�+ =
�b1 (�) +

q
b1 (�)

2 � 4b0 (�)
2

> 1 (33)

(see Figure 3). For our benchmark parametrization, we also compute that for
� 2 S; ja2j < 3: The rest of the proof follows Proposition (1). From Figure
9, we know that the Lyapunov exponent is positive at bifurcation values of ��
corresponding to the upper branch. The Lyapunov exponent is positive for the
lower branch for � (�) < �(0:89) but then it becomes negative.
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Figure 9

4.2.3 Model with Bonds: Liability Targeting Rule

In this version of the model the linearized tax rule becomes

�̂ t = �ŷt +
�1

(1� �) l̂t�1 (34)

where l̂t denotes the log-deviation of total real liabilities RtBt

Pt
. Inserting the tax

rule (34) in the Phillips curve (29) we get the following equation for in�ation

�t = ��t+1 + ��ŷt +
����1
(1� �) l̂t�1:

The last equation describes the evolution of government liabilities

l̂t = ��1 (�� � 1)�t �
�1
�
��1 � 1

�
(1� �) l̂t�1:

Again, local determinacy depends on the local stability of the system

AT0

24 ct+1
�t+1
l̂t

35 = AT1

24 ct
�t
l̂t�1

35
where

AT0 =

24 1 1
� 0

0 � 0
0 0 1

35
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AC1 =

264 1 1
��� 0

��� 1 � ����1
(1��)

0 ��1 (�� � 1) ��1(��1�1)
(1��)

375
If the Jacobian

JC =
�
AC0
��1

AC1

has two eigenvalues outside the unit circle and one inside, we have a locally
determinate equilibrium.

Proposition 3 Consider the model with bonds and targeting rule under the
benchmark calibration.
(i), Let the �scal stance be mild: �1 = 0:4: For each � (�) 2 (� (0:649) ; � (0:95))

there exist a ��
�
�� and ��

�
�+ such that for 1 < �� <

��
�
�� and �� > ��

�
�+ the equi-

librium is locally determinate, and for �� 2
�
��
�
��;

��
�
�+

�
the equilibrium is lo-

cally indeterminate. Furthermore, for each interval S2+ =
�
�̂
�

�+ � �; �̂
�

�+

�
; and

S2+ =
�
�̂
�

�� + �; �̂
�

��

�
, " > 0; there is a "determinate" invariant curve bifurcat-

ing from the steady state as �� crosses �̂
�

�+ for the �rst interval and �̂
�

�� for the
second interval, so that given an initial condition for L0 close to the invariant
curve, there exists initial values fc0; �0g for which the equilibrium trajectories
converge to the invariant curve.
(ii), Let the �scal stance be aggressive: �1 = 1:7: For each � (�) 2 (� (0:45) ; � (0:95))

there exists a ��
�
�� and ��

�
�+ such that for 1 < �� <

��
�
�� and �� > ��

�
�+ the equi-

librium is locally determinate, and for �� 2
�
��
�
��;

��
�
�+

�
the equilibrium is locally

indeterminate. Furthermore, for an interval S1+ =
�
�̂
�

�+; �̂
�

�+ + "
�
; " > 0,

there exists a closed invariant curve which bifurcates from the steady state as

�� crosses �̂
�

�+ from below, and for initial conditions of L0 close to this in-
variant curve , there exists a continuum of initial values fc0; �0g for which the
equilibrium trajectories converge to the invariant curve. In addition, for an in-

terval S2+ =
�
�̂
�

��; �̂
�

�� + "
�
; " > 0 there is a "determinate" invariant curve

bifurcating from the steady state as �� crosses �̂
�

�� from below, so that given an
initial condition for ��1 close to the invariant curve, there exists initial values
fc0; �0g for which the equilibrium trajectories converge to the invariant curve.

Proof. (i) Given the additional parameter �1 analytical expressions become
complicated. We therefore focus on the benchmark calibration. Following the
same steps as for the Propositions above we get

C1 = 1 + a2 + a1 + a0

= 0:3468��� � 0:34675� � 0:00008
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C2 = �1 + a2 � a1 + a0
= 14:911� � 17:575��� � 6:456 7

where C1 > 0 and C2 < 0 if �� > 1. Consider the region of � (�) 2 (� (0:872) ; � (0:95)) =
S:Given � 2 S ; we can solve for �� that satis�es a quadratic equation equivalent
to 31. The two solution branches are given by (see Figure 10 ):

�̂
�

�� ; �̂
�

�+ =
1:3476� 10�2

�2

�
1:5143� + 74:105�2 � 1

2

q
8:7334�2 � 50:021�3 + 57:625�4

�

Figure 10

For our benchmark parametrization, we also compute that for � 2 S; ja2j <
3: Finally, Figure 11 shows that the Lyapunov exponent is positive for both
branches.
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Figure 11

(ii) Again, we have

C1 = 1 + a2 + a1 + a0

= 1:503��� � 1:5033� + 0:00003

C2 = �1 + a2 � a1 + a0
= 69:123� � 68:945��� � 1:1776

where C1 > 0 and C2 < 0:if �� > 1. Consider the region of � (�) 2 (� (0:872) ; � (0:95)) =
S: Given � 2 S ; we can solve for �� that satis�es a quadratic equation equiv-
alent to 31. The two solution branches are given by

�̂
�

�� ; �̂
�

�+ =
8:7943� 10�4

�2

�
28:441� + 1184:6�2 � 1

2

q
3101:3�2 � 3688:2�3 + 837:88�4

�
see Figure 12 .
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Figure 12

For our benchmark parametrization, we also compute that for � 2 S; ja2j < 3:
Figure 13 shows that the Lyapunov exponent is negative for the upper branch
and positive for the lower branch.

Figure 13
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Proposition 4 Consider the model under benchmark calibration and �� =

1:5:For each � (�) 2 (� (0:745) ; � (0:95)) there exist 1 � � < ��1 such that for
1 � � < �1 < ��1 the equilibrium is locally determinate, and for �1 > ��1+ the
equilibrium is indeterminate. Moreover,

(a) If � 2 (� (0:7487) ; � (0:777)) ; for an interval S1+ =
�
�̂
�

1 � �; �̂
�

1

�
; " > 0,

there exists a closed invariant curve which bifurcates from the steady state as

�1 crosses �̂
�

1 from above, and for initial conditions of b0 close to this invariant
curve , there exists a continuum of initial values fc0; �0g for which the equilib-
rium trajectories converge to the invariant curve.
(b) if � 2 (� (0:745) ; � (0:7486)) [ (� (0:778) ; � (0:95)) ;or an interval S2+ =�

�̂
�

1; �̂
�

1 + �
�
; " > 0 there is a "determinate" invariant curve bifurcating from

the steady state as �� crosses �̂
�

1, so that given an initial condition for b0 close
to the invariant curve, there exists initial values of fc0; �0g for which the equi-
librium trajectories converge to the invariant curve.

Proof. In this case we have that

C1 = ��2��1 (�� � 1) (� + �1 � 1) ��

so that if �� > 1; C1 > 0 provided �1 > �1 + �; and

C2 = ���
�
�� ��1 + ���1 + 2����1 � �2�

�
so that C1 < 0 provided �1 satis�es

��
�
1 <

�
�2 � 1

�
�

(2��� � � (1� �))���
: (35)

Consider the region of � (�) 2 (� (0:745) ; � (0:95)) = S:Given � 2 S ; we can
solve for �� that satis�es a quadratic equation equivalent to 31. The solution
is given by

��1 =
c1(�)� 1

2

p
c2(�) + 1:5455� 10�4

�8:8244� + 73:328�2 + 1:0407� 10�2
(36)

c1(�) = �7:1515� 10�2� � 7:6519�2

c2(�) = �2:202 6� 10�4� + 0:15778�2 + 24:291�3 + 56:818�4 + 1:1031� 10�8

see Figure 5. For our benchmark parametrization, we also compute that for � 2
S; ja2j < 3: It is also possible to show that for � 2 S ��

�
1 > ��1 so that condition

(35) is satis�ed provided (36) is satis�ed. Finally, Figure 14 shows that the
Lyapunov exponent is negative for � 2 (� (0:7487) ; � (0:777)) and positive for
� 2 (� (0:745) ; � (0:7486)) [ (� (0:778) ; � (0:95)).
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Figure 14
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