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Abstract

Economies at early stages of development are often shaken by abrupt changes
in growth rates, whereas in advanced economies growth rates tend to be relatively
stable. To explain this pattern, we propose a theory of technological diversifi-
cation. Production makes use of different input varieties, which are subject to
imperfectly correlated shocks. Technological progress takes the form of an in-
crease in the number of varieties, raising average productivity. In addition, the
expansion in the number of varieties in our model provides diversification bene-
fits against variety-specific shocks and it can hence lower the volatility of output
growth. Technological complexity evolves endogenously in response to profit in-
centives. The decline in volatility thus arises as a by-product of firms’ incentives
to increase profits and is hence a likely outcome of the development process. We
quantitatively asses the predictions of the model in light of the empirical evidence
and find that for reasonable parameter values, the model can generate a decline
in volatility with the level of development comparable to that in the data.
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1 Introduction

Economies at early stages of the development process are often shaken by abrupt
changes in growth rates. In his influential paper, Lucas (1988) brings attention to this
fact, noting that “within the advanced countries, growth rates tend to be very stable
over long periods of time,” whereas within poor countries “there are many examples
of sudden, large changes in growth rates, both up and down.”

Motivated by this empirical observation, this paper proposes an endogenous growth
model of technological diversification. The key idea of the model is that firms using a
large variety of inputs can mitigate the impact of shocks affecting the productivity of
individual inputs. This takes place through two channels. First, with a larger number
of inputs, each individual input matters less in production, and productivity becomes
less volatile by the law of large numbers. Second, whenever a shock hits a particular
input, firms can adjust the use of the other inputs to partially offset the shock. Both
channels make the productivity of firms using more sophisticated technologies less
volatile. Since firms in richer economies tend to rely on technologies involving a richer
menu of inputs, richer countries will also tend to be less volatile.

The starkest example of this mechanism of technological diversification is offered
by a comparison of an economy using only labour and an economy using labour and
capital. Under standard assumptions on technology the latter will tend to be more
productive on a per-capita basis. Our point is that it will also be less volatile. In
particular, any shock that reduces the supply of labour (such as a general strike, an
epidemic, etc.) will have a bigger negative impact on the economy that does not have
scope to substitute labour with capital. Or, to think of a currently more realistic
example, consider leading-edge steel producers that have the capacity to process iron
ore of a range of qualities as compared to more basic producers who can only accept
high-quality ores as input. Clearly the former are more productive, and, in addition,
they should be less susceptible to shocks to the (global or local) supply of high-quality
iron ore.

The stabilizing virtues of technological diversification are currently much in evi-
dence in the debate over energy policy. The recent increase in oil prices has led to
overwhelming bipartisan support in the U.S. for the H-prize Act of June 2007, which
seeks to incentivise “achievements in overcoming scientific and technical barriers asso-
ciated with hydrogen energy” in order “to free [the country| from its dependence on
foreign o0il.”! It has also led to increased demand for vehicles that can run on a range

!The first quotation comes from the Act text itself. The second comes from its sponsor’s speech
at the House of Representatives; the Act was passed with 408 Ayes and 8 Nays.



of energy sources beyond gas.?

Our model builds on the seminal contributions by Romer (1990) and Grossman
and Helpman (1991) and characterizes technological progress as an expansion in the
number of input varieties.> The number of varieties evolves endogenously in response
to producers’ incentives to add to the range of inputs they use, and increases in the
number of varieties raise the average level of productivity. What is new here is that
each input variety can be hit by a productivity shock, so that the expansion in the
number of varieties can provide diversification benefits, and hence reduces the level of
volatility.* In other words, the reduction in volatility in the model arises as a likely
by-product of firms’ incentives to increase productivity. As such, our model highlights
a hitherto overlooked implication of expanding-variety growth models, which makes
them suitable to explain the decline in volatility that accompanies the development
process.

We say “suitable to explain” because, interestingly, once technological diversifica-
tion is embedded in an endogenous growth model with multiple firms, it is possible to
generate examples where volatility and development do not necessarily move in oppo-
site directions. Heuristically, in our model the growth process determines the evolution
of both the number of varieties used by the typical firm, and the contribution of each
variety to aggregate output; complete technological diversification in the economy is
achieved (conditional on the number of different varieties) when the contributions to
output of all varieties are equalized, since this minimizes the reliance of the economy
on each individual variety and hence the potential impact of a variety-specific produc-
tivity shock. Roughly speaking, the number of varieties used by the typical firm is
what matters most for development, while the extent of technological diversification is
what matters most for (reducing) aggregate volatility, and theoretically it is possible
for them to move in different directions. Intuitively, however, the two should move
together most of the time, and this is indeed the case in virtually all our numerical
experiments. This is because the introduction of a new variety in the economy, ceteris
paribus, always increases the level of development, and raises the degree of technological
diversification by reducing the contribution to output of previously existing varieties
(thus lowering volatility). We also find that for reasonable parameter values, the model

2The Economist, 05/06/06, page 52, “Alternative Energy: Canola and Soya to the Rescue” and
“The Economist, 12/05/07, page 47, Craze for Maize: Ethanol is rapidly transforming life in Iowa
and the rest of the corn belt.” To be sure, increased concern with global warming has also played a
part in this trend.

3See also Barro and Sala-i-Martin (2004) for a comprehensive formalization and discussion of

expanding-variety models.
4Shocks in this model are variety-specific and to the extent that the varieties are used by a positive

measure of firms, they lead to aggregate volatility.



can yield a decline in volatility with development quantitatively comparable to that in
the data.

Previous theoretical work on the relation between volatility and development, in-
cluding Greenwood and Jovanovic (1990), Saint-Paul (1992), Obstfeld (1994), and
Acemoglu and Zilibotti (1997), has focused on financial—as opposed to technologi-
cal—diversification. These models feature an inherent trade-off between productivity
and risk at the firm-level: Firms must choose between low-return but safe activities
and high-return but risky ones. Firms in financially underdeveloped countries do not
have the facility to pool risks, so risk-averse entrepreneurs minimize firm-level risk by
choosing low productivity projects. In financially developed countries, risks can be
pooled and hence entrepreneurs undertake high-return and high-risk projects. This
leads to an increase in firm-level volatility with development. Aggregate volatility may
still be lower in developed countries if financial deepening facilitates the creation of
new financial diversification opportunities across firms, as is the case in Greenwood
and Jovanovic (1990) and Acemoglu and Zilibotti (1997).

Unlike existing models, the expanding-variety model we propose posits no trade-off
between productivity and risk at the firm level. Indeed our point is that there are
technological reasons to expect the adoption of a new variety to concurrently lead to
an increase in productivity and a decline in volatility. Hence, preferences towards risk,
which are crucial in models of “financial diversification,” play no role in our story,
where firms are uniquely concerned with profit maximisation. Similarly, and perhaps
most importantly, the process of technological diversification does not hinge on the
patterns of financial development.

These theoretical differences lead to important differences in empirical implications.
First, models of financial diversification predict an increase in firm-level volatility with
the level of development, while our model predicts a decline in firm-level volatility.’
The decline in firm-level volatility finds support in recent work by Davis, Haltiwanger,
Jarmin and Miranda (2006), who document that in the US, over time, privately held
firms have experienced a substantial decline in volatility; the authors furthermore show
that the decline in aggregate volatility in the US has been overwhelmingly driven by
the decline in firm-level volatility (and not by the aggregation of highly volatile firms).°

®The unit of analysis in these models can be construed as a sector rather than a firm. From a
theoretical point of view, interpreting it as a firm is more appealing, as the optimizing agent will
likely operate at the firm level. Furthermore, the sectoral interpretation is challenged by the finding
that sectoral volatility declines with productivity and the overall level of development. (Koren and
Tenreyro, 2007).

6Comin and Philippon (2005) had previously documented that publicly traded firms in the US
experienced an increase in volatility during the same period. However, as stressed by Davis et al.
(2006), publicly traded firms are a small fraction of all privately held firms. Furthermore, since a
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A second testable difference is that in models of financial diversification the decline
in aggregate volatility with development is brought about by financial deepening. In
our model, the decline in volatility takes place independently of the level of financial
deepening. As we show in the next section, this implication is corroborated by the evi-
dence. The strong negative correlation between volatility and development takes place
at all levels of financial depth. Put differently, even controlling for the level of financial
development, there remains a strong negative correlation between volatility and devel-
opment that needs explanation. Even more importantly, while in cross-country data
volatility and financial deepening are negatively correlated, this correlation vanishes
once one controls for country-specific fixed effects, casting some doubt on the ability
of a financial channel to explain the time-series evidence.” While we view both mar-
gins of diversification for the firm, financial and technological, as complementary and
empirically plausible, our model will focus exclusively on the second.®

As mentioned, our model posits no trade-off between productivity and volatility at
the firm level. The absence of trade-off can be substantiated by two pieces of evidence:
First, more productive and larger firms appear to be also less volatile, a result we
document in the next section. And second, as shown in Koren and Tenreyro (2007),
countries at early stages of development tend to specialize in low-productivity, high-
risk sectors, whereas the opposite pattern is observed at later stages; in other words,
the development process is characterized by a move towards both more productive and
safer sectors.’

It is also important to distinguish our mechanism of technological diversification
from standard arguments concerning sectoral diversification, namely that developing
countries should reduce their reliance on cash crops or natural resources in order to
hedge against fluctuations in these commodities’ prices. First, our model concerns the
diversification of inputs, not the diversification of outputs. Second, and most impor-

majority of firms in most countries are privately held, the evidence from Davis et al. (2006) seems
more relevant to our model, which aims at understanding the differences in aggregate and firm-level
volatility between developed and developing countries.

"In contrast, the correlation between volatility and development is strong both in cross-sectional
and within-country analyses.

8Technological diversification is also complementary to other other finance-related mechanisms
emphasized in the literature. In particular, shocks can be amplified by introducing financial frictions,
a task we do not undertake in the interest of clarity and simplicity. For models with financial frictions,
see, among others, Bernanke and Gertler (1990), Kiyotaki and Moore (1997), Aghion, Angeletos,
Banerjee and Manova (2004).

9n departing from a necessary trade-off between productivity and volatility, our paper is closer to
Kraay and Ventura (2007), though the mechanisms are completely different: in their model, the key
idea is that in the event of a shock, terms of trade respond more countercyclically in rich countries
than in poor countries.



tantly, sectoral diversification is usually associated with a move away from comparative-
advantage, so it tends to reduce (average) income. Instead, technological diversification
chiefly occurs as a by-product of strategies whose main aim is to increase average in-
come. !’

The paper begins with a summary of empirical regularities that motivate our model
and differentiate it from models emphasizing financial diversification. Section 3 presents
the model of technological diversification and derives its implications for aggregate
dynamics. Section 4 presents a quantitative analysis of the model. Section 5 offers

concluding remarks. All proofs are in the Appendix.

2 Empirical Motivation

This Section summarizes and discusses four empirical regularities that motivate the
model of technological diversification we present.

Regularity 1. GDP volatility declines with development, both in the cross section
and for a given country over time.

The negative association between aggregate volatility and the level of development is
one of the stylized facts in the macro-development literature and the starting motivation
of this paper. The relation is illustrated in the left hand-side panel of Figure 1, which
plots the (log) level of volatility, measured as the standard deviation of annual growth
rates over non-overlapping decades from 1960 through 2000, against the average (log)
level of real GDP per capita of the decade.!! The graph also shows the linear regression
line together with the 95-percent confidence-band intervals. The second panel of Figure
2 plots the same variables after controlling for country-specific fixed effects and shows
that for a given country over time, growth and changes in volatility are also negatively
correlated.'?

10Tn fact, sectoral diversification as a hedging strategy is dominated by financial hedging on
commodity-futures markets. As discussed, no such (better) substitute exists for technological di-
versification.

1The data come from the World Bank’s World Development Indicators.

12Tn related work, Ramey and Ramey (1995) study the link between volatility and growth. We
focus instead on the links between volatility and development or between changes in volatility and
growth, to be consistent with the predictions of the model we later develop.



Figure 1: Volatility and Development
Cross-Sectional Relation Within-Country Relation
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Note: The plots show log volatility (standard deviation of annual growth rates over
non-overlapping decades from 1960 through 2000) against the average (log) real GDP
per capita of the decade, without controlling for country- fixed effects (left panel) and
controlling for fixed effects (right panel). Regression lines and 95% confidence

intervals also displayed.

The negative relationship between volatility and productivity is of course also a
within-industry phenomenon. Figure 2 provides a graphical illustration of this for
agriculture. It displays the volatility of wheat yield (calculated as the standard devi-
ation of annual yield changes) of the 20 biggest wheat producers against their level of
GDP per capita. As the plot shows, yield volatility declines sharply with the level of
development.'?

Our model of technological diversification is able to generate a negative correlation
between volatility and development as countries with a larger number of varieties are
more productive and, in general, better diversified across varieties. In other words, the
high volatility at early stages of development results from the relatively low number of
varieties used in the production process.'*

In the case of agriculture, for example, growing wheat with only land and labour
as inputs renders the yield vulnerable to idiosyncratic shocks. In contrast, using land

13This remains true if we control for differences in climate across countries, including the volatility
of rainfall and temperature.

4Various empirical studies document the slow or delayed process of adoption of varieties in de-
veloping countries. For example, Caselli and Coleman (2001) find that the adoption of computers
depends crucially on the level of development of the country and Caselli and Wilson (2004) show that
this result extends to a broader set of more sophisticated equipment. In related work, Comin and
Hobijn (2004) find that most innovations originate in developed countries and spread only gradually

to less-developed countries.



and labour together with artificial irrigation, different varieties of fertilizers, pesticides,
etc., can make wheat-growing not only more productive on average but also less risky,
because farmers have more options to substitute failing, unavailable, or simply tem-
porarily expensive inputs. Note that agricultural technology varies substantially with
development. For example, of the top 20 wheat producers, India uses 2.3 tractors per
1,000 acres of arable land; this number is 128.8 for Germany. Fertilizer use also varies
hugely. India uses 21.9 tons of nitrogenous fertilizers per 1,000 acres; Germany uses
183.8 tons.??

Figure 2. Wheat Yield Volatility and Development
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Note: The Figure plots the volatility of wheat yield (standard deviation
of annual yield changes) of the 20 biggest wheat producers against (log)
real GDP per capita. OLS regression line and 95% confidence intervals
also shown. Source: FAOSTAT 2005.

Regularity 2. The negative association between aggregate volatility and development
takes place at all levels of financial development.

The relation between aggregate volatility and development holds at different levels
of financial development, measured, as is standard, by the (log) ratio of private credit to
GDP.!¢ This is illustrated in Figure 3, where we split the level of financial development

5 Food and Agriculture Organization of the United Nations, FAOSTAT Yearbook 2005.

6Data on private credit over GDP come from the World Bank’s World Development Indicators.
This is the most widely used measure of financial development, because it is available for the broadest
set of countries.



into different quartiles. The graphs show that the decline of volatility with development
is not sensitive to the level of financial development of the country. That is, controlling
by financial development, there is still a strong negative association between volatility

and development that needs explanation.

Figure 3: Volatility and Development by Financial Development Quartile
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Note: The plots show log volatility (standard deviation of annual growth rates over
non-overlapping decades from 1960 through 2000) against the average (log) real GDP
per capita of the decade, for different quartiles of financial development (private credit

over GDP). Regression lines and 95% confidence intervals also displayed.

Regularity 3. The correlation between aggregate volatility and financial development
is negative in the cross-section, but nil in the time-series evidence.

Figure 4 plots the (pooled) cross-sectional and within-country relations between
volatility and the (log) level of financial development (as measured before). As shown



in the plots, there is a strong negative correlation in the cross-section. The correlation,
however, vanishes once country-specific fixed effects are controlled for. This finding
suggests that the decline in volatility for a given country over time cannot be explained
in a statistical sense by higher levels of financial development, calling for alternative

channels.

Figure 4: Volatility and Financial Development
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Note: The Figures plot log volatility (standard deviation of annual growth rates over
non-overlapping decades from 1960 through 2000) against the average (log) level of
financial development of the decade (measured as private credit over GDP, without
controlling for country- fixed effects (left panel) and controlling for fixed effects (right

panel). Regression lines and 95% confidence intervals also displayed.

We summarize these correlations in Table 1. The first two columns show the co-
efficients from a regression of (log) volatility on (log) real GDP per capita, excluding
and including fixed effects. The coefficients are statistically significant at the 1 percent
level. The third and fourth columns show the corresponding results when volatility is
regressed on the (log) ratio of private credit to GDP. As anticipated, the cross sectional
relation is negative; however, once fixed effects are included, the estimated elasticity
is both statistically and economically insignificant. Finally the last two columns show
the regression results when both variables are included in the regression. Volatility
is strongly (and negatively) associated with per capita GDP, but it shows little or no
(partial) correlation with the level of financial development.



Table 1. Volatility, Development, and Finance

Dependent Variable: Standard Deviation of Growth Rates
-0.2319***  -0.3008*** -0.1689***  -0.3153***
[0.0318] [0.0622] [0.0454] [0.1169]
-0.1468***  -0.0198 -0.0711* 0.0124
[0.0542] [0.0489] [0.0380] [0.0539]

GDP per capita (constant PPP $)

Private Credit / GDP

Country Fixed Effects No Yes No Yes No Yes
Observations 585" 585" 403 403 403 403
R-squared 0.13 0.56 0.09 0.60 0.13 0.62

Note: All variables are in logs. The dependent variable is measured as the standard deviation of annual growth rates over
non-overlapping decades from 1960 to 2000. The regressors are computed at their mean values over the decade. Clustered

(by country) standard errors in brackets. * Significant at 10%; ** significant at 5%; *** significant at 1%. = When the
sample is constrained to the 403 bservations for which private credit/GDP is available, the corresponding coefficients in
the first and second columns are 0.221 and 0.307, significant at the 1% level.

Regularities 2 and 3 motivate our search for alternative explanations (beyond fi-
nancial development) that can yield the decline in volatility with development. In the
model, hence, we shut down the financial-development channel to focus exclusively on
technological diversification.

Regularity 4. More productive firms are less volatile. The decline in aggregate volatil-
ity coincides with the decline in firm-level volatility.

Firm-level evidence suggests that there is no trade-off between lower volatility and
productivity. More concretely, productivity and volatility in US firm-level data are
strongly negatively correlated.!” This is illustrated in Table 2, which shows the coeffi-
cients from a regression of (log) volatility of sales growth on average size (employment)
and productivity (sales per worker) for 9000 Compustat firms. Volatility is calcu-
lated for non-overlapping decades from 1950 through 1999. Both productivity and size
are negatively correlated with firm-level volatility.!® The negative correlation remains
strong even if we include firm-fixed effects to consider within-firm variation only; in
other words, firms becoming more productive also become less volatile.

This empirical observation motivates an important feature of our model of tech-
nological diversification that differentiates it from models of financial diversification:
Unlike the latter, our model posits no necessary trade-off between lower volatility and
productivity at the firm level. As a result, and consistent with the data, in our model
more productive (and larger) firms are also relatively less volatile.

17 As usual, the paucity of firm-level data for less developed countries motivates the focus on US
data.

18The negative correlation between firm-level volatility and size has been documented in an early
study by Hymer and Pashigian (1962).

10



A second important empirical observation is that, as shown by Davis, et al. (2006),
the decline in aggregate volatility in the US has been overwhelmingly driven by a
decline in firm-level volatility and not by the aggregation of increasingly more volatile
firms displaying lower correlation in their performance.

This is another crucial aspect of our model, which distinguishes it from models of
financial diversification. The decline in aggregate volatility with development coincides
with (and in fact is driven by) the decline in firm-level volatility. In models of financial
diversification, instead, the decline in aggregate volatility with development takes place
together with an increase in firm-level volatility (and a necessary decrease in cross-firm
correlation).

Table 2. Firm-Level Productivity and Volatility
Dependent Variable: Standard Deviation of Growth

Sales per worker -0.115*** -0.137***  -0.136***
[0.008] [0.007] [0.017]
Empl t -0.192***  -0,194***  -0.198***
mploymen [0.002] [0.002] [0.009]
Firm Fixed Effects No No No Yes
Decade Fixed Effects Yes Yes Yes Yes
Observations 25408 25408 25408 25408
R-squared 0.06 0.24 0.26 0.60

Note: All variables are in logs. The dependent variable is measured as the standard deviation
of annual sales growth rates over non-overlapping decades from 1960 to 2000. The
regressors are computed at their mean values over the decade. Clustered standard errors in
brackets. *Significant at 10%; **significant at 5%; *** significant at 1%.

The empirical regularities listed in this Section motivate the model that we develop
next.

3 A Model of Technological Diversification

This Section starts by first formalizing the intuition of the model for a single firm in a
static setup. It then presents the dynamic, stochastic, multi-firm model.

3.1 Production technology: Formalizing the intuition in a sta-
tic setup

Consider the following production process for a firm. Output is produced by combining
a variety of inputs in a constant-elasticity-of-substitution (CES) production function,

n e/(e—1)
y= [Z(Xili)ll/gl ; (1)

=1
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where [; denotes the number of workers allocated to the operation of input-variety ¢, x;
is the productivity of this variety (i.e. the number of efficiency units embodied in it),
n denotes the number of varieties used by the producer, and ¢ € (1, 00) is the elasticity
of substitution across varieties.’

Notice that we are implicitly assuming (here and throughout the paper) that the
firm uses each input in constant quantities, here normalized to 1. What varies is
the number of input varieties and the quantity of labour assigned to each of them—
capacity utilization—(which depend on the firm’s decisions), and the productivity of
each variety (which will be random). In reality, of course, the quantity of each input
will also vary, but abstracting from this decision allows us to focus on technological
diversification, which comes from an expansion in n, without overly complicating the
analysis with relatively unimportant issues.

Alternatively one could re-interpret the n varieties not as inputs but as disembodied
technologies to turn labour into output. Expanding the number of varieties of such
technologies is also likely to both increase productivity and provide technological di-
versification, so the “disembodied technology” interpretation also serves to potentially
explain the empirical relation between volatility and development. Hence, in the rest
of the paper we refer to the varieties interchangeably as inputs and as technologies.?’

Suppose first that the input productivities y are non-random, and all normalized
to x; = 1. Since all technologies are symmetric in this deterministic setup I; = [/n for
all 7, with [ denoting the total number of employees working at the firm. We can then
rewrite (1) as

y = nt/E0 (2)

Labour productivity (y/l) is increasing in the number of varieties, since varieties are
imperfect substitutes (¢ < oo). This is the usual “love of variety” effect of many
endogenous growth models (Romer 1990, Grossman and Helpman 1991). The effect
is stronger the lower is e, that is, the less substitutable varieties are. Intuitively, if
varieties are highly substitutable, any additional variety is less needed. To rule out
explosive growth, we assume ¢ > 2.2

19 As usual in endogenous growth models, we assume that ¢ > 1, that is, technologies are gross
substitutes.

20Yet another interpretation is that the production function is of the form y =
[Z?:l xil_l/s] ¢/te=1) , where x; is the intermediate good produced by the firm by transforming labour
through z; = x;l;. Nothing substantial would change if the inputs were produced by specialized pro-
ducers and sold to the firm at arm’s length; in this case, shocks to x,; would translate into input price
shocks.

21 Otherwise the love of variety effect would be so powerful that the aggregate return to varieties
would become increasing. Higher levels of development would counterfactually imply increasing rates

12



Suppose now that variety-specific productivities are independently and identically
distributed (non-negative) random variables with constant mean and variance o2.
(Later on, we specify a particular distribution function for the shocks to simplify the
derivation of the model dynamics). We take the extreme assumption of independence
for expositional clarity, but our argument goes through as long as shocks are imper-
fectly correlated. It is still true that, on average, output per worker will increase in
n.22 What is also true is that the variance of y declines in n.

The simplest way to see this is by linearising (1) around the mean of each shock:

I ) S 3)
=1

=1 Y

where # = (z — Ex)/Ex denotes the infinitesimal deviation of variable x from its
mean in proportional terms, and MP; denotes the marginal product of technology 1.
The last equality follows from Euler’s theorem, and the fact that varieties are ex ante
symmetric. The proportional variance of firm-level labour productivity is then

A~ 0'2

Var(y — 1) = — (4)
The variance is declining in n, the number of technologies. This is a simple application
of the law of large numbers: the variance of the average of n independent random
variables is proportional to 1/n.

Notice that we did not need to specify a distribution for the productivity shocks,
which highlights that technological diversification at the firm level works for a variety
of potential shocks. In what follows, and in the interest of analytical simplicity, we
specify a particular stochastic process for productivity to characterize the dynamics
of technological diversification in a multi-firm economy. As it will become clear, in a
multi-firm economy, not only the overall number of varieties in the economy will be
relevant for volatility, but also how the usage of those varieties is distributed across
firms.

3.2 The Dynamic Model: Aggregate economy

As shown in the previous exercise, volatility and labour productivity at the firm level
depend crucially on the level of technological complexity of the firm, represented by

of return on capital inputs, inconsistent with observed development patterns (see Caselli and Feyrer
(2007)).

22To see why, note that y'~1/¢ = 3" (y;ls)
positive support. Adding more of these variables raises the sum in terms of first-order stochastic

1=1/2 is the sum of independent random variables with

dominance. Then E (y), the mean of a monotonic transformation of '~/ has to increase.

13



the number of varieties. In this section we study how the overall level of technological
complexity in a multi-firm economy is determined and how it evolves over time, by en-
dogenizing firms’ decisions to invest in new varieties. Much as in models of endogenous
growth, firm owners will be attracted by greater profit opportunities. To spell out the
dynamics of the model, we specify the aggregate and individual-firm setup, and the
stochastic properties of the productivity process.

There is a unit mass of monopolistically-competitive firms, indexed by j, each
producing a differentiated product. The output of the final good is a CES aggregate
of firm-level outputs,

e—1)

v(t) = [ / ) dj] - 5)

where y(j,t) is the output produced by firm j at time ¢, and € € (1, 00) is the elasticity
of substitution across firms. As described before, each individual firm produces output
by combining a variety of inputs through the CES production function

e/(e—1)
Y1) = [Z[xmw, t)]l*/&] , ()
where (%) is the productivity of variety i at time t, [;(j,t) is the number of workers
allocated to variety ¢ by firm j at time ¢, and ¢ is the elasticity of substitution between
varieties.?? For analytical convenience, we assume the elasticity of demand in (5) to be
the same as the elasticity of substitution between varieties. This assumption is satisfied
naturally if varieties represent different brands valued by the consumer, in which case
the elasticity of demand and the elasticity of substitution are equal. As will become
clear later, this assumption will ensure that profits be linear in the number of varieties,
simplifying the algebra of aggregation. It can, however, be dispensed with at the cost
of additional algebra and virtually no gain of insight.

Before specifying the rest of the model in detail we offer a brief informal preview
of the main ingredients. Firms add new varieties to the range of inputs they use by
engaging in some adoption effort (e.g. to learn how to use it). In particular, they
invest some resources in an adoption process, which succeeds the sooner the more
resources the firm invests. In deciding how much to invest in adoption each firm seeks
to maximize profits, and since firms are risk-neutral technological diversification is
not the goal of this process. Hence the adoption part of the model is very similar to
standard expanding-variety models, except that the adoption goes on simultaneously

23The sum is over all varieties 4 in use by the firm.
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in multiple firms and, due to the random elements of the model, it implies that different
firms will have different number of varieties at the same time.

The new feature of the model is that input varieties are subject to productivity
shocks. In particular, once a new variety has been added to a firm’s range of inputs, it
becomes a permanent part of it until a random shock makes it unusable forever (this
assumption is motivated below). This “failure shock” is variety-specific, so it hits all
firms that happen to be using that particular input. Such firms see their range of
varieties shrink by one. The aggregate effects of such shocks depend, therefore, on the
distribution of varieties across different firms. Hence to study the evolution of volatility
over time it is necessary to keep track of this distribution.

3.3 Productivity shocks

Time is continuous. Varieties have a constant productivity (normalized to 1) during
their random lifetime, after which they cease to contribute to production. In our
notation, x,(t) equals 1 until time 7}, when it falls to 0. 7; is the (random) date of
failure of this technology. The arrival of failures for a given variety ¢ is common to all
firms using this variety, and it follows a Poisson process with arrival rate . Failures
are independent across varieties.

Because failure arrives with a Poisson process, the lifetime follows an exponential
distribution with parameter ~; the probability that 7; < ¢ is hence

Pr(T; <t)=1-—¢e"".
Clearly, conditional on variety ¢ working at time 0, the distribution of x;(¢) is given by

1 with prob. e ¢,

X (t) = { (7)

0 with prob. 1 — e,

Substituting this productivity into the production function,
e/(e—1)
yGit) = | Y LGt
iy, (6)=1

We denote the number of productive varieties used by firm j at time t by n(j,t).
Given that all productive varieties are identical, firms will allocate the same number
of workers to each,

so that the production function can be written as

y(j, t) = 14, t)n(j, t)/ Y.
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Note that this formula implicitly assumes that labour can be reallocated at no cost im-
mediately after a shock is realized. This is exclusively done for simplicity; introducing
reallocation costs will magnify the loss of negative technology shocks and mitigate the
immediate gain from successful adoption, but will not alter the main results.

Our main motivation for the choice of the stochastic process in (7) is analytical
tractability. It dramatically simplifies the decision problem of the firm, because there
is only one firm-level state variable to keep track of: Since the productivity of each
variety can only take the values zero and one, firms only care about the set of varieties
that are still productive. Moreover, the symmetry of the varieties, together with the
memoryless dynamics, ensures that it is only the number of productive technologies
that matter. Since ours is the first paper to introduce random time variation in the
productivity of varieties in an expanding-variety model, we are obviously not aware of
alternative approaches that keep the algebra manageable.

While analytical tractability is the main consideration here, (7) does describe a
class of relevant input-specific shocks, namely shocks that make an input completely
unavailable. This can occur and has occurred in the case of some natural resources that
exist in finite quantities. Here the canonical example familiar from history textbooks
is the 19th century “guano crisis”. Guano was widely used as a fertilizer to increase
crop yields during the early 19th century all over the world. In the second half of the
century the reserves run out (largely due to the Peruvian government’s mismanage-
ment) and the fertilizer became unavailable, causing a major disruption in agriculture
- particularly in countries that did not use a more diversified set of fertilizers including
nitrates and mined rock phosphate.?* Today of course the talk is of the depletion of
oil reserves, an example no less relevant because it has not (yet) materialized.

An input does not need to be a natural resource to become unavailable. In 1993
an explosion in a Sumitomo plant in Japan led to the annihilation of two thirds of
the world supply of the high-grade epoxy resin used to seal most computer chips,
causing shortages and price hikes in the semiconductor industry for several months.
More generally, disasters of various nature can destroy the output of highly-specialized
producers of intermediates. Furthermore government regulation or trade policy can
stop the production or import of certain intermediate products. Human capital is
not immune from such shocks either: Pol-Pot and Mao Zedong wiped out the human
capital of an entire generation in their respective countries.

Even if not taken literally, the process in (7) can also be seen as a short-cut to
model less radical disruptions; in that spirit, shocks to y, can result, for example,

24The guano crisis was a major shock. President Fillmore’s State of the Union adress in 1850 devotes
a large section to it.
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from increases in the cost of production or import price of a variety (or from the
price of an input needed to use that variety, such as the price of oil or other fuels),
from trade disruptions, weather shocks that render a variety useless or severely hinder
its transportation to its destination, etc. Note that, though the Poisson process may
suggest irreversibility, in practice the failure of a given variety in the model needs not be
completely irreversible, since a variety can in principle be put back into place, provided
that firms repay the adaptation (or adoption) costs, which we later describe.?®

3.4 Static decisions of a firm

The firm hires workers in competitive labour markets; at time ¢ it faces a wage rate
w(t) (which depends on the aggregate state of the economy, and is taken as given by
individual firms). The only firm-level state variable is the number of technologies in
use at time ¢, n(j,t). The marginal cost is given by:

Z w(t)' e = w(t)n(j, )19,

i=1

Firms using more varieties have lower marginal costs.

Since firms engage in monopolistic competition, each firm faces an iso-elastic de-
mand with elasticity e: y(j,t) = Y (¢)p(j,t) ¢, where aggregate output Y'(¢) is taken as
the numeraire, and p(j,t) is the price charged by firm j at time ¢. Profit maximisation
implies that the firm charges a constant €/(¢—1) markup over its marginal cost:

1) = =it/

g —

and its revenues are given by

1—¢
UG ) = V(.0 = Y () |22 i ®)
Profits are a constant 1/e fraction of revenues,

1 [gw(t)

7(5:1) = PG,y b /e = Y (1) | ——

} n(it) = AWnG, ),

1—¢
where A(t) = 1Y () [?T(tl)] . Since an individual firm takes Y (¢) and w(t) as given,

A(t) is also given from a firm’s perspective.

2580, for example, a trade interruption might make a technology or variety temporarily unavailable,
but the variety can potentially come back into use after firms reinvest in its adoption or adaptation.
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The total wage bill of the firm is a constant fraction, (1 — 1/¢), of total revenues
and hence it is also linear in n:

w(t)l(j, t) = (e = 1) A()n(j, t).
We can thus express firm-level employment as

(e - DA®)
w(t)

Firms with twice as many varieties employ twice as many workers. The number of

1(G,t) =

n(j,t).

varieties can be therefore interpreted as an index of firm size, whether the latter is
measured by employment or by total sales. Note, finally, that the number of workers
assigned to an individual variety, 1(j,t) = I(j,t)/n(j,t) is independent of the number
of varieties currently in use by the firm n(j,t), and hence equal for all firms, a result

that shall prove useful when aggregating across firms:

iy 100 = DA@
t

(t) = (9)

() w()
3.5 Technology adoption

As in Romer (1990) and Grossman and Helpman (1991), adopting new varieties is a
costly activity.?® For analytical convenience, we assume that investment in adoption
pays off after a random waiting time. Higher investment in adoption results in a
shorter expected waiting time for the next variety. Specifically, following Klette and
Kortum (2004) we assume that the adoption of a new variety requires both a stock
of knowledge (embedded in current technologies, n) and a flow of investment. If the
firm spends I(j,t) units of the final good to adopt a new variety, the adoption will
be successful with a Poisson arrival rate A(j,t) = f[I(j,t),n(j,t)], where f(.,.) is
a standard neoclassical production function subject to constant returns to scale and
satisfying the Inada conditions.?”

Continuing with our example from agriculture, a firm that seeks to adopt, say, a
new variety of fertilizer, will need to incur in costly activity, which might include the
effort to find the appropriate type and dose for its soil and crop, the build up of some
infrastructure to spread it, etc. The more the firm invests and the more productive or

26 Adoption costs can be also thought as the cost of research and development of new varieties.
For developing countries, however, referring to adoption, adaptation, or imitation costs seems more
appropriate.

2TThe random, “memoryless” adoption process ensures that we do not have to track past adoption
investment flows of the firm. This is a standard simplifying assumption in endogenous growth models.

18



bigger (and hence more knowledgeable) the firm is, the more likely the variety will be
put into place sooner.

Let A(j,t) = A(j,t)/n(j,t) denote the adoption intensity by firm j at time t. By
the CRS property of f, the flow cost of this adoption intensity is

](]7 t) = g[)\(j, t)]”(]? If),

where ¢(.) is the inverse of f(., 1), an increasing, convex function with g(0) = ¢'(0) = 0,
lim, ., ¢'(z) = oc.

As mentioned, technological diversification in this model is not driven by risk aver-
sion. To stress this point, we next characterize the optimal rate of technology adoption
in the case of risk-neutral agents. In Appendix B we characterize adoption under com-
plete financial autarky and risk-averse investors. We do this to highlight that there is
technological diversification in both cases and that the incentive to diversify does not
hinge on the financial structure of the economy or the degree of risk aversion (though
quantitatively they may affect these incentives).

Identical risk-neutral households maximize the present value of consumption, dis-
counted at the rate p: o

U= / e "C(t) dt.
t=0
The Euler equation pins down the riskless rate in the economy at r(t) = p. Investors
maximize the expected present value of profits, discounted with the rate p.

To ensure non-negative growth and a finite value for the firm, we make the following
parameter restrictions on 7, p and the cost of adoption:

9(v) +pg'(v) <L/2 and lim g(z) = oo. (10)

T—+p

The first condition ensures that a variety is profitable enough so that it is worth
replacing every failed variety. The second condition ensures that adoption is costly
enough so that the growth rate of the economy will never exceed p, the subjective
discount rate.

Let V[n(j,t),t] denote the expected present discounted value of profits for a firm j
with n(j,t) varieties at time ¢.

o0

Vinti.). 8 =B [ e, — 16,0 dt =

Ey [ e A0 — ghGonGi 0 e (1)

=0
Profits accrue from operations, 7(j,t), netting out the costs of investment, I(j,1).
By the homogeneity of the problem, each term is linear in n(j,t). Future profits are

19



discounted by p. The stochastic dynamics of n(j,t) is described as follows. In each
time period of infinitesimal length h, one of the inputs fails with probability yn(j,t)h
(omitting higher order terms), decreasing n by 1, or the firm becomes successful in
adopting a new input (with probability A\(j,¢)n(j,t)h), increasing n by 1.

The Bellman equation describing the decision problem and the value of the firm is

pVInGi, ), 1) =max { A(n(j, ) = g(Nn (i, )
+ An(j, ){Vn(j. 1) + 1,t] = V[n(j,
+n(j, ){VIn(j.t) — 1,t] = VIn(j,
+ Jim B {V[n(jit + Ab),t + At = V[n(j,t + At), 1]} /At} .

3 (12)

The opportunity cost of the value of the firm (pV(n,t)) equals the sum of (i) flow
profits net of adoption costs (An — g(A)n), (ii) capital gain from successful adoption
of a new technology (which occurs with hazard rate An), (iii) capital loss if any of the
n varieties fails (each of which has a hazard rate ), and (iv) exogenous capital gains
(due to changes in the aggregate environment affecting profitability).

The state of the aggregate economy only affects the firm’s adoption problem through
its impact on profits per variety, A(t). To characterize the dynamics of A(t), we close
the model by considering the conditions for labour market and good market clearing.

3.6 General equilibrium

From (9), individual output for firm j is given by:

y(,t) = n(j, )71,

which can be aggregated across firms to obtain

Y(t) = l /0 G dj] e,

Let us denote by N (t) the overall number of varieties across all firms: N(t) = fol n(j,t)dj.
Note that the same variety can recur multiple times in N(¢); to stress the point—and
because it will become relevant later—let us denote by N(t) the number of different
varieties in the economy at time ¢. Also, because the measure of firms is normalized to
unity, N(¢) can be thought of as the average number of varieties across firms, hence,
N(t) < N(t).

Using the labour market clearing condition N (¢)l(t) = L, where L is a fixed labour

supply, we can express aggregate output as

Y (t) = N(t)/EVL, (13)
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Aggregate GDP per worker, Y/ L, is an increasing function of N, the overall number of
varieties used in the economy. We can hence think of N as an index of development.

Equation (13) pins down aggregate demand as Y = NV L, To derive equilib-
rium wages, note that each firm has a constant profit margin (1/¢). The total wage
bill is a fraction 1 — 1/ of total output, which pins down the wage rate at

w(t) = (1 - 1) NORG (14)

5
Equations (5) and (14) together imply that the demand shifter of the firm is

At) = éN(t)@_a)/(a_l)L. (15)
Profits per variety decrease with aggregate productivity or remain unchanged when
¢ = 2. There are two opposing forces at play. On the one hand, since varieties are
substitutes, higher productivity of competitors implies lower demand for a particular
firm’s product. On the other hand, since varieties are imperfect substitutes, there is a
demand externality: more aggregate varieties raise income and hence demand for every
firm’s product. As long as the elasticity of substitution is not too low, the first effect
dominates. When ¢ = 2, the two effects cancel out.

3.7 The Balanced- Expected-Growth Path

In a large class of endogenous growth models (that do not feature aggregate uncer-
tainty) a restriction on parameters is needed to insure the existence of a balanced-
growth path, or an equilibrium path for the economy where the growth rate of GDP
is constant. Our model is no exception: if we assume away productivity shocks to
existing varieties, a deterministic balanced-growth path exists if and only if ¢ = 2.

Our model differs from standard endogenous-growth models in that there are aggre-
gate shocks affecting the productivity of existing varieties. The important consequence
of this is that aggregate output growth in every period is itself a random variable: when
a lot of varieties are hit (or a variety used by many firms), output growth will be slow;
when few varieties are subject to failure (or ones used by only few firms), output will
grow fast. However, it turns out that under the same assumption ¢ = 2 it is possible
to characterize the dynamic behaviour of the expected growth rate. In particular, at
any time t and for any previous history of the economy the expected (instantaneous)
growth rate E(dY (t)/Y (t)) is constant. We refer to the resulting equilibrium path as
the balanced-expected-growth path.?

28 Note that for ¢ > 2 there is no long-run growth in the non-stochastic version of the model (absent
population growth) and the economy stagnates. Stochasticity adds deviations to the level of output
in the stagnated economy, but cannot generate balanced growth.
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We next derive the firm-level and aggregate dynamics for the balanced-expected
growth path, and then confirm that the balanced-expected-growth path exists and is
the only equilibrium of the model. We also compute the expected growth rate on the
balanced-expected-growth path

3.7.1 Firm-level dynamics

Proposition 1. In the balanced-expected-growth path, the optimal adoption intensity
A is constant (independent of n(j,¢) and calendar time t). The value of the firm is of
the form V[n(j,t),t] = v-n(j,t), where v and \ are jointly determined by

g\ =v, (16)
L2—g(A)=(p—A+7)v. (17)

Adoption intensity, A, is positive and unique. It is increasing in market size L, decreas-
ing in the discount rate, p, decreasing in the probability of failure, v, and decreasing
with an upward shift in adoption costs.

The first equation is the first-order condition for optimal adoption: the marginal
cost of adoption, ¢'(\), should equal the marginal value of an additional variety, v. The
second equation defines the value of a variety recursively: given the optimal adoption
intensity, current profits, L /2—g, should compensate for the opportunity cost of capital,
pv, as well as for the expected capital loss, (7 — A)v. The proof of this and all the
remaining propositions are in the appendix.

The linearity of the program ensures that the firm’s problem is scale independent.
The intensity of adoption, and therefore the firm’s growth rate is independent of n.
We can now fully characterize the dynamics of a firm.

Proposition 2. In the balanced-expected-growth path, the expected growth of sales
for the firm is A — 7, and the variance of sales growth is [\ + 7]/n(j,t).%°

Equation (8) shows that sales are a linear function of n(j,t), hence their growth
rate equals the growth rate of n(j,t). The expected growth in the number of varieties
equals the rate of technology adoption minus the rate of technology failure, A —~. The
variance of sales growth is driven by the two shocks the firm faces: the randomness of
the adoption process and variety failures. Hence the variance of an individual variety
is A 4+ v. Total sales volatility then declines with n(j,¢) by the law of large numbers.
(The Appendix gives a formal proof.)

29We focus on the behavior of sales growth, for which data are available at the firm level. (See
Section 2.)
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This proposition implies that bigger, more productive firms are less volatile,*’ an
empirical regularity we discussed in Section 2.

3.7.2 Aggregate dynamics

To understand the dynamics of aggregate GDP, we need to characterize the dynamics
of N(t). There are two types of shocks affecting N(t). First, successful adoption of
some firms will move them from n varieties to n + 1 varieties. By Proposition 1, all
firms adopt new varieties with intensity A, independently of n. We assume that firms
try to adopt technologies with lower indexes first. A firm of size n has thus access
to technologies 1,2, ...,n and would, upon success, adopt technology n + 1 next. We
assume that the success of adoption is completely idiosyncratic, that is, independent
across firms. Because there is a continuum of firms, a non-stochastic fraction of them
is going to become successful in adoption at any point in time. This means that, in
this setup, adoption does not contribute to aggregate uncertainty.

The second type of shock is the failure of a particular technology k. This decreases
the number of varieties by 1 for all firms that use variety k.3! Because there is a positive
mass of these firms, this shock induces an instantaneous jump in N. The aggregate
impact of the shock (and, ultimately, aggregate volatility) will depend on the measure
of firms using technology k.

By a change of variables, the aggregate number of varieties can be written as N (t) =
Zﬁ\;(f) im;(t);, where m;(t) is the mass of firms that have exactly ¢ varieties at time ¢.
(Recall that N(t) > 0 is the number of different varieties in the economy, which also
evolves endogenously in the model, as firms with the largest number of varieties adopt
new ones or technological shocks destroy existing ones.??) Given our assumption on
the ranking of varieties, the firms that use variety k are exactly the ones that have at

least k varieties: Zfi(,? m;(t).

30 As is generally the case in monopolistic competition models, n is an index of both productivity
and size.

3'When a variety is shocked, the index of all varieties with higher index are readjusted so as to
leave no wholes in the ordering.

32By our assumption on the ranking of varieties, N(t) is the upper bound at time ¢ of the support
of the distribution of productive varieties i; it is also the maximum number of productive varieties
used by the biggest (most productive) firm in the economy. N () = max;[n(j,t)].
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Formally, we can describe the dynamics of N(t) as follows:

N(t) + AN (t)h with Pr=1— O(h)
N@®) +AN@h—1- V0 mi(t) with Pr =4k + o(h)

N(t+h)= (18)

N +ANh —1- SV i(t)  with Pr = 4% + o(h)

(N() + AN()h — 1 - mg, (t) with Pr = ~h + o(h)

Over an infinitesimal h period of time, a non-stochastic AN measure of firms ex-
pand their varieties by 1, and with probability «h, variety £ fails, affecting a measure
va(,? m; of firms.

The aggregate state of the economy is fully characterized by the entire size distribu-
tion of firms, {my(t), ma(t), ..., my(t)}. Aggregate productivity (and hence per-variety
profitability) is a function of the first moment of this distribution, N(t) = va(,? im;(t).

With € = 2, GDP is linear in V,

The expected growth rate of Y is hence simply the expected growth rate of IV,
E(dY/Y) = (A —7)dt, (19)

the speed of adoption minus the speed of “depreciation.” We next characterize long-run
growth (and therefore \) and aggregate volatility.

Long-run growth in the economy can be characterized by its mean, as stated in the
following proposition:

Proposition 3. A balanced-expected-growth path exists; on the balanced-expected-
growth path the expected growth rate z, is implicitly defined by

[p—azlg' (v +x)=L/2—g(y+2), (20)

with = € [0, p). The growth rate is increasing in L; decreasing in the discount rate, p;
decreasing in the probability of a technology shock, v; and decreasing with an upward
shift in g(.) (costlier adoption). In equilibrium the economy is always on the balanced-
expected-growth path.
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3.8 Volatility Dynamics along the Balanced-Expected-Growth
Path

Since at any time ¢ (instantaneous) GDP growth dY'(¢)/Y (¢) is a random variable, it
not only has an expected value but also a variance. Unlike the expected value, however,
this variance is not constant, even on the balanced-expected-growth path. (Notice that
if it were, the model would have no hope of explaining the cross-sectional patterns of
volatility and development that motivate the paper). Instead, it depends on the set
of technologies in use, as well as their distribution among firms. In general, these
depend on the particular history of shocks that have hit the economy, so the variance
must be computed by numerical simulation. Before we turn to this task, we offer some
theoretical results that both help with the simulations and provide some intuition on
the main mechanism at play.

The volatility of N (and hence the volatility of Y') depends on the whole distribution
of varieties used by firms. If some varieties are used by more firms than others, then
shocks affecting these varieties are going to have a larger impact on GDP. Letting s
denote the contribution to output of technology k, s, = zg\;(,? m;/N, we can express

aggregate variance as

N(t)

Var(dN/N) =~ Zsz dt.
k=1
Intuitively, a shock hitting variety k reduces N by a fraction s;. Given that this

has probability v d¢, the aggregate variance caused by this shock is vs? dt. Because
variety-specific shocks are independent, we can simply add up the individual variances.
The next proposition states this result formally.

Proposition 4. In the balanced-expected-growth path, the variance of GDP growth

rates is given by
N(t)
Var(dY/Y) = ~vdt Z 5. (21)
k=1
To gain some intuition for formula (21), consider some simple examples. If all firms
use just one variety, the sum on the right-hand side is one. This leads to the highest
possible level of aggregate volatility, v dt. If all firms use N different varieties, the
contribution of each variety to GDP is s, = 1/N and the sum equals 1/N. In this
particular case, the sum decreases inversely with the number of varieties and volatility
(the standard deviation of GDP growth rates) hence declines at the rate 1/ VN33

33Note that in this example, N, the number of different varieties, coincides with N, the total
number of varieties, since the measure of firms with N varieties is 1. Note also, that since firms are
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The term fo:l s2 can be construed as an index of the technological concentration
(or the inverse of an index of technological diversification) of the economy and it is the
key determinant of volatility. In a multiple-firm economy, volatility depends not only
on the overall number of varieties, N (t) (or the number of different varieties N(t)) but
on the degree of diversification in the usage of different varieties. As mentioned, both
N (t) and the shares s, are history dependent. For example, there can be histories of
shocks such that N (t) is very large but very few firms use input number N’; histories
where N(t) is low, but used by many firms; etc.

Through the introduction of new varieties, technological progress increases the de-
gree of technological diversification (and hence lowers volatility) while increasing the
level of development. This imparts a natural tendency for a negative correlation be-
tween volatility and development that will be prevalent in our numerical analysis.

Note, however, that in principle the relation between volatility and development
does not need to be always strictly negative.** To understand this, it is convenient to
distinguish among the three elements that shape the behaviour of aggregate volatility
and development in the model. The first is the adoption of new varieties by firms at
the technological edge (i.e., firms with the maximum number of varieties, N). The
second is the adoption of a variety that already exists in the economy by firms that
are relatively less sophisticated (i.e., firms with fewer than N varieties). The third is a
shock that destroys a variety.

The first element unambiguously leads to an increase in output and a decrease in
volatility. The second element always leads to an increase in output, but its effect on

not symmetric ex-post (only a fraction of firms is successful in adoption), this result cannot hold at
every point in time.

31E.g., a given economy can have a lower overall number of varieties N(t) (that is, a lower level of
development) than a second one and at the same time display a higher level of diversification and hence
lower volatility. To see this, consider the cross-sectional comparison of two different economies, A and
B with identical probabilities of failure . In economy A a measure x € (0, 1) of firms uses variety 1
and a measure (1 — z) uses varieties 1, 2, and 3. In our notation, {m{, m4', m4'} = {,0, (1 —x)}; the
overall number of varieties in this economy is N4 = Zf:k im# = 3 — 2z and its expected variance
is Vard = 'yZizl 53 = 7%12%)”2&. In economy B, all firms use varieties 1 and 2: {m? mZ m&} =
{0,1,0}; the overall number of varieties in B is hence N = Y, imP = 2 and its variance is
Var? = YD ohed 53 = 'y%. It can be easily shown that N4 < NZ and Var? < Var®? for % <z < %.
The condition = > % ensures that there is a large enough fraction of firms in A using only one
technology so that the overall number of varieties in economy B is bigger than in A; the condition
T < % ensures that there is a sufficient fraction of firms employing three different technologies in
economy A and thus leading to higher diversification of aggregate risk and lower volatility in A
relative to B. By continuity, the result will also hold for some range of z if some firms in A also
use technology 3, that is, when the number of different varieties N = 3 in use is the same for both
economies.
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volatility is ambiguous: Though in general it causes a decline in volatility, it might,
under certain conditions cause an increase. The third element always causes a decrease
in output, while its effect on volatility is also in principle ambiguous: In general it
increases volatility, but it might, in some circumstances cause a decline.

To see these mechanisms more clearly, consider them one at a time (that is, shutting
down the other two).

1. Adoption of new varieties (by firms with n(j,t) = N(t))

Consider first what happens in the model when an infinitesimal number of firms at
the technological edge adopt a new variety. Denote the measure of firms by A and use
(") to denote the new values of the different variables (after adoption). As these firms
have added one more variety, the overall number of varieties in the economy goes up
by A:

N' =N +A.

Or, in terms of derivatives, lima_,o & /A’N = 1 > 0. Hence, output unambiguously
increases. (Note also that the number of different varieties in the economy goes up
by 1: N' = N 4 1.) Before the introduction of the new variety (indexed N + 1), its
contribution to output was sy, = 0. With the introduction of the new variety, the
contributions of the different technologies become

S/NH =A/N
s = Ns;/N' for all i # N + 1

and the new variance is given by:

Var' — (%)2 (Zf_l 2 (A/N)2>

The change in variance is hence Var’ — Var = (N—]J\ZA)2 <Zf\11 s+ (A/N)2> — Zf\il s2,

or, in terms of derivatives:

_ Var' — Var 2 N
llm —— = S

AS0 A N i=1 <0,

which is strictly negative.®> Thus, the introduction of a new variety always increases
development and decreases volatility

’ _N 2_1 7 2 2
< . . — . N .
35To see this, note that lima_ w = lima_.g % Y oict 52 + lima_o (NLM) (A/AN) )

2

The first terms converges to 0/0. By I'Hopital’s rule, it becomes —% >~,_; s?. The second term

converges to 0.
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2. Adoption of existing varieties (by firms with n(j,t) < N(t))

Consider now what happens when an infinitesimal number of firms A adopts a
variety k, already in use in the economy. (We continue to denote by (') the new
values.) As these firms have added one more variety, the overall number of varieties
again goes up by A:

N'=N+A.

That is, lima_.g W = 1 > 0. Hence, output always increases (though the number

of different varieties in the economy is unchanged: N’ = N .) Before the adoption of
variety k, its contribution to output was s > 0. After adoption, the contribution of
the various technologies become

sy = (Nsi +A) /N’
©= Ns;/N' for all i # k,

(3

and the new variance is given by:

Var’ = (%)2 (ZL s24+ (A/N)? + QSkA/N)

The change in variance is hence Var’ — Var = (N—]J\:A)Q <Zf\i1 s+ (A/N)? + QSkA/N> -

N . ..
>, 87, or, in terms of derivatives:

_ Var — Var 2 N o
i{% A Y (Zi—l % T Sk) ’

which is negative if and only if S~ s? > 5.2 Hence, as long as 3.

N 2
i=1
volatility decreases with the adoption of variety k. Intuitively, as long as a variety is

> Sk,

not widely used in the economy, increasing its usage provides diversification benefits
against other variety-specific shocks and hence lowers aggregate volatility. In contrast,
when a variety is already intensely used, increasing its usage makes the economy more
exposed to shocks affecting that variety.>” Note that the firms adopting technology k

36 The limit results from ’'Hopital’s rule.

37To see this, consider the following numerical illustration. The distribution of the number of firms
with exactly ¢ varieties (m;) is given by {mq,mo, ms,my} = {1—10, 1—10, %, 1%}; the overall number of
varieties in the economy is then N = Z?:k im; = 3.1 and the shares of each variety in the economy are
{s1;52; 53; 54} = {0.32;0.29;0.26;0.13}, with Y1 _, 52 = 0.272 (and Var = 0.2727). Hence Y p_, 82 <
s2. Adoption of variety 2 by firms with only variety 1 can hence lead to an increase in output and
an increase in volatility. Indeed, if all m; firms adopt variety 2, we have: {mf],mf,m§, m,} =
{0, ll, %, % , which implies N’ = 3.2 and {s]; s; s4; s} = {0.31;0.31;0.25; 0.13} , leading to Var’ =
Yy ry 3 = 0.273y > Var. Because variety 2 was already widely used, increasing its usage by firms
of size 1 made the economy more exposed to shocks to that variety.
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always become less volatile, even if aggregate volatility increases (that is, even if the
share of that variety in the economy s is already big).

3. Negative shock to a variety

Finally, consider the consequences of a negative shock that destroys variety k. The
number of firms using this variety is Zfik m; = Ns (by definition of s;). The overall
number of varieties falls to N = (1 — )N and output correspondingly falls to Y’ =
(1 — sz)Y. (The number of different varieties also falls by 1: N’ = N — 1.) The new
shares in the economy are given by:*®

s; = s;/(1 —sy) for all i < k,
st =si41/(1 —sp) forall k <i < N

I
SN—O

and the new variance is given by:

r_ 1 N 2 2
Var = m (21:1 Si — Sk |-

The change in variance is hence:

1 N 52
Var' —Var=|—— — 1 2_ Tk
ar ar [(1 — Sk)g } Zi:l S; (1 — Sk)Q

e [@_sk) S s _sk} ,

which is positive if an only if Zfil s2 > i - In words, as long as s, is not too big,

expected volatility increases with the destruction of variety k. This happens together

with the unambiguous decline in output caused by the destruction of that variety.
Volatility might decrease only if the production process relies strongly on variety k.
In that case, the disappearance of that variety leads to higher diversification for the
economy.

Note that because s;, > 7= o the destruction of a variety is less likely to induce a

positive correlation between volatility and development than the adoption of existing
9

varieties.?

38Recall that when a shock takes place, we re-index all varieties so as to leave no holes in the
ordering. E.g. if an economy has varieties k = 1,2,3,4 and variety 3 fails, then, in the following
(infinitesimal) period variety 4 is indexed 3 and k¥’ = 1,2, 3.

39 Destruction induces a positive correlation when ZN s2 < 77— whereas the adoption of existing

=11
.. . N 2
varieties does it when ) ." | s7 < sy.
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While one can construct examples where the negative relation between volatility
and development breaks, in general, the model dynamics generates a negative corre-
lation. This is because the growth process through the steady introduction of new
varieties leads on average to both higher levels of development and higher degrees of
technological diversification (and hence lower volatility). Only occasionally the adop-
tion of a variety that is already widely used in the economy, or (though less likely) its
destruction, can generate a positive correlation between volatility and development. In
general, the upward trend in GDP and the downward trend in volatility imparted by
the growth process will prevail, yielding a negative correlation, as will become evident
in the numerical example. In the long run, as per capita GDP grows without bound,
volatility approaches zero, as stated by the following proposition.

Proposition 5. As per capita GDP increases without bound, volatility tends to zero.

The intuition is straightforward: Long-run growth of GDP per capita can only be
achieved by the addition of new varieties, which reduces volatility, as we have shown
above. (The formal proof is in the Appendix.)

This provides a powerful characterization of the long run equilibrium in the econ-
omy. As time progresses, the economy will resemble the deterministic economy of stan-
dard growth models with expanding varieties. Eventually, volatility will vanish and the
economy will reach a stable, non-stochastic growth rate of A — ~. This highlights that
the decline in volatility is a necessary by-product of the development process.

Finally, we should perhaps stress that aggregate volatility depends on the distrib-
ution of varieties in the economy, but not on the distribution of firms per se. This is
because technology shocks are variety specific but not firm specific.’

We next provide a numerical analysis of the model and its predictions.

40Note, however, that the distribution of firms can have an impact on the distribution of varieties, as
large firms tend to use more varieties, that is, aggregate volatility can change if the relative importance
of large and small firms changes. For example, suppose that a fraction « of firms uses two varieties,
while the other 1 — « fraction uses only one. The overall number of varieties is then

N=a2+(1-a)l=1+aq,

which is clearly increasing in . The higher the fraction of large firms, the more overall varieties are
used.
The variance is then

which is decreasing in «. Since small firms are using only one variety while large firms use two,
reducing the number of small firms and increasing the number of large firms leads to diversification
across varieties.
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4 The relation between volatility, growth, and development:
A quantitative assessment

Our analysis so far has shown that volatility declines monotonically with the degree
of technological diversification (as defined, inversely, in equation (21)) and that, ce-
teris paribus, the introduction of a new variety in the economy increases the level of
development and the degree of technological diversification, thus lowering volatility.
We have also argued that the growth process, through the expansion in the number of
varieties, tends to impart a negative correlation between volatility and development,
though this tendency may be overturned under certain histories of shocks; specifically,
it is conceivable that countries that use very intensely a few varieties display both a
relatively high level of development and high volatility due to their lack of diversifica-
tion. To establish whether these occurrences are frequent or rare one has to simulate
the model.

Our strategy is to generate artificial data by simulating the model for 150 economies
(countries) for T" periods (we describe how we choose T' below). All economies start
from the same initial conditions and are governed by the same parameter values. How-
ever, shocks are country-specific and different realizations of shocks lead to potentially
different equilibrium paths and thus different levels of volatility and development at
any point in time. We then analyse the relation between volatility and the level of
development for the simulated economies. We also compare patterns of volatility and
development in the last 40 years of our simulations to the corresponding patterns in the
cross-sectional data from roughly 150 countries that we already examined in Section
2. Note that because the volatility of aggregate GDP depends on the distribution of
technologies across firms, our simulations need to keep track of the entire distribution
of technology usage across firms at all points in time.

4.1 Parametrization and Computation

We focus the analysis on the balanced expected-growth path, and compute a discrete-
time approximation of our continuous-time model. In calibrating our discrete-time
approximation, a period is interpreted as a quarter. We need to set values for ~, the
arrival rate of technology failures, and p, the rate of time preference. In principle, we
also need to specify and parametrize the cost of adoption function g(.) and the size of
the economy, L. However, note that ¢ and L only serve to pin down the search intensity
A, which of course is constant in the balanced-expected-growth path. Hence we let ¢
and L unspecified and calibrate A directly. Finally, we need to specify the number of
periods for the simulations, 7T

The model key parameter, v, is in principle difficult to calibrate without directly
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observing technology shocks. Our strategy is thus to simulate the model for a large
grid of values for ~, ranging from 0.01 to 0.20. Values below 0.01 imply virtually no
aggregate volatility; values above 0.20 are unlikely, as they would imply that tech-
nologies last on average less than 5 years.*! Recalling that in our model the expected
growth rate is A — 7, we can then set A so that the annual growth rate is 0.02 (i.e.
A =7+ 0.02). The rate of time preference p is set at an annual rate of 4 percent.*?

We start out with 150 identical economies populated by identical firms of size ng = 5
and simulate the model in each economy for 1" periods. Varying ng is almost equivalent
to varying the number of periods T over which the model is run, since with positive
expected growth, a longer period (like a higher ng) implies that countries will exhibit
on average a higher level of technological sophistication by the end of the period. In
the interest of space, we only report the results for different 7°.43

In every period, a fraction of firms is successful at adoption and becomes bigger,
increasing its number of technologies by 1. In case there is a shock to technology k,
though, all firms using that technology (that is, all firms of size k and above) shrink
by 1. To simulate the model, we resort to discrete-time methods. (Note that the state

41 Technologies with such short duration exist in practice, but are unlikely to be the norm. Perhaps
a way to extend the model is to allow for heterogeneity in the probability of failure across technologies.
For now, we concentrate on what we think are the first-order insights of the model by assuming a
constant .

12To see what these choices might imply for the cost of adoption function g and the size of the
economy L consider the following parameterization:

g(A) =a(b—X)"°,

where a > 0 relates to the overall level of adoption costs, b > 0 represents an upper bound on adoption
investment, and ¢ > 0 governs the cost elasticity with respect to adoption. Given this choice of g,
equations (16) and (17) imply that the choice of L is simply a normalization. If we set the upper
bound b to be the sum of our choices for p and 7, and normalize L to L = 2, equation (20) simplifies
to

l—alp+7—=N"?=ap(p+y-X1)"" (22)

With an expected growth rate (A — ) equal to 2 percent, and p = 0.04, this can be rewritten as:

ﬁ = a(0.04 — 0.02)~¢
Hence, there are infinitely many combinations of ¢ and a that are consistent with our calibration
and satisfy assumption (10). For example, ¢ = 4 implies that the cost of adoption of a new variety,
1/(¢+1), is 10 percent of total firm sales; this choice pins down the value of the level parameter a at
3.2-1078. A value of ¢ = 15 implies a cost of 3 percent of firm sales and a = 2.05 - 10727, and so on.
Incidentally, estimates of cost-of-adoption functions are hard to find except for some narrowly defined
sectors.

43Results on the comparative statics for ng are available from the authors.
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space is already discrete.) We approximate the continuous-time adoption and failure
processes as follows. Over a period At, a firm of size n; adopts ¢ o+ new varieties, where
¢:.A¢ has a Poisson distribution with expected value An;At. If there are IV, technologies
overall, the number of failures, k; A, is also Poisson with expected value yv/N;At. Once
the number of failures is determined, they are randomly allocated across technologies,
so that each technology has the same k; or/N; chance of failing. In symbols:

qi.a+ ~ Poisson(An;At)
k¢ ar ~ Poisson(y N, At)

As At tends to zero, these processes converge to the continuous-time processes de-
scribed in Section 3. We take At to be a quarter of a year. (Since both A and ~
are fairly small, At does not need to be too small for the above approximation to be
accurate. )

At any point in time, we can take a snapshot of the economy by counting the number
of firms in each size bin, my;, Moy, ..., mg,. GDP at time ¢ can then be calculated as
Y=L Ziji(f) 1my;. To construct statistics that have the same interpretation as those in
our empirical analysis of Section 2 we compute decade averages of (the log of) GDP and
(logs of) standard deviations of GDP growth over a decade around the decade mean
(our measure of volatility). The only difference with the corresponding statistics in the
data are that in the model the raw data are quarterly (for a better approximation of
the Poisson process) rather than annual.

Because both adoption and technology shocks are permanent, economies will di-
verge (or at least will not converge) over time. At any point in time, the only differ-
ence between the simulated countries is that they have experienced different histories
of shocks. Some got lucky, grew fast, and became stable, others were unlucky, grew
slowly (maybe even shrank) and remained volatile. When comparing our simulated
world to the data, we treat real-world economies as separate realizations of T" years of
technology shocks.

Recall that in Section 2 we run a regression of country-level volatility on income for
the four decades between 1960 and 2000. To run a similar regression on our simulated
panel of countries we need at least 40 years of data. The relevant processes, however,
have presumably started well before 1960. Furthermore, with only 40 years of data the
model economy experiences too few shocks for the income distribution to meaningfully
fan out. Hence, we consider that the length for the simulations should be significantly
longer. We report results for a variety of lengths, with a minimum of 100 years, and
a maximum of 300 years. For each of these simulations lengths, we report statistics
for the last four decades. We stop at 300 years because this is roughly what it takes
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for the model to reach a point where the negative relationship between volatility and

development matches quantitatively the one in the data.***

4.2 Results

We present the main results in Tables 3 through 5. Table 3 shows the model-generated
slope coefficients from OLS regressions of decade volatility on average (log) GDP of the
decade, pooling data from all of the 150 simulated countries and—for each T—the last
four decades.*® This is done for different values of v and 7. The empirical counterpart
is the first column of Table 1.

The Table shows that for most parameter values, the regression coefficients are
negative and significant at standard confidence levels and quantitatively comparable
to those in the data (—0.23). (We come back to this point later.) The only exception
is for v > 0.15 and T" = 100; to understand why the correlation can be positive, recall
from Section 3.8 that both the destruction and adoption of intensely used varieties can
generate a positive correlation between GDP and volatility. Destruction of a sufficiently
highly used variety causes a fall in GDP and an increase in the diversification level
of remaining varieties, and hence a decrease in volatility. Adoption of such variety
increases GDP and decreases the degree of diversification, thus increasing volatility.
At high levels of ~, it is more likely that each individual variety be hit by a shock;
furthermore, a large ~ also implies a large value for A, since the growth rate (A — ) is
constant and hence the adoption of any given variety is also more likely. If in addition,
an economy is still at very low levels of development and concentrated on very few
varieties, it is hence more likely that the resulting correlation be positive. In sum, for
a given T, a positive correlation is more likely to happen for higher values of v (as the
intensity of adoption and the probability of any individual-technology shock is higher);
for a given ~, it is more likely to happen at earlier stages of development (or low levels

4“4 More specifically, the model takes 250 years to quantitatively match the empirical relation between
volatility and development under 0.05 < v < 0.10.

45This is similar in spirit to Acemoglu and Zilibotti (1997), who ask how many years it takes for
their model to achieve full diversification. In our model, unconditional diversification can never be
achieved because the number of different varieties N (t) grows without bounds. Since our goal is to
explain the empirical relation between volatility and development, we accordingly ask how many years
it takes to generate patterns comparable to the data.

460ne may be concerned that the regression coefficient is sensitive to the particular realization of
shocks these 150 hypothetical economies have experienced. The reported standard errors quantify the
uncertainty about this parameter, as estimated by OLS in the simulated sample. We also ran a Monte
Carlo study to determine the empirical distribution of the slope parameter from 10,000 repetitions.
This confirmed that the distribution is well approximated by a normal distribution with the OLS
mean and standard error, hence these two numbers accurately characterize the relationship in the
simulated data.
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of T), since economies will have fewer varieties and will hence be more exposed to
shocks.

We also computed the within-country slopes by running similar regressions after
controlling for country-specific effects. We do not report these results to economize on
space.’” As in the data, however, the time-series slopes generated by the model tend
to be larger in magnitude than the corresponding cross-sectional slopes. The average
slope across all T and ~ is —0.43, and is significant at the 1 percent level.

Table 3. Volatility and Development: Slope Coefficients for Different v and 7'

Poisson Parameter
Number of Years
T 0.01 0.02 0.05 0.10 0.15 0.20
100 -0.2548  -0.4171  -0.2627  -0.1984  -0.0132 0.2042
(0.097) (0.045) (0.027) (0.023) (0.027) (0.034)
150 -0.2936  -0.3414  -0.2252  -0.0861  -0.1012  -0.1139
(0.035) (0.042) (0.026) (0.027) (0.025) (0.025)
200 -0.4091  -0.2185  -0.2082  -0.1966  -0.1102  -0.0980
(0.024) (0.038) (0.025) (0.022) (0.020) (0.021)
250 -0.4086  -0.2940  -0.2065  -0.1953  -0.1493  -0.1242
(0.022) (0.037) (0.023) (0.021) (0.019) (0.018)
300 -0.4141  -0.2961  -0.1366  -0.1284  -0.1427  -0.0878
(0.021) (0.036) (0.023) (0.020) (0.017) (0.017)

The Table shows the slope coefficients and standard deviations (in parentheses) from
regressions of (log) volatility of annualized quarterly growth rates over a decade on average
(log) level of development in the decade for model-simulated data, under different
parameter values; a constant (not reported) is included in each regression. The number of
periods T indicates the number of years during which the model was run. The regressions
use data from the four decades previous to year T. Significance at 1 percent level is
highlighted in bold. The number of observations in each regression is 600, corresponding to
150 countries observed in 4 consecutive decades. (Results are not altered by introducing
decade-fixed effects.)

Table 3 shows that, for a large grid of parameter values, the slopes generated by
the model are quantitatively similar to those observed in the data. This is not enough,
however, to show that the model can explain the decline in volatility with development
seen in the data, which is the starting motivation of this paper. For this assessment it
is important to know not only the slope coefficients but also the degree of dispersion
in GDP generated by the model. In the data, in 1960 the standard deviation of log

47TThe results are available from the authors.
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GDP was 0.92, and the interquartile range of log GDP was 1.34.%® Table 4 displays
the model-generated standard deviation of (log) GDP and interquartile ranges of (log)
GDP at the beginning of the last four decades of simulations for different parameter
values. The dispersion generated by the model is in general smaller than that in
the data, though as v reaches 0.10 or higher, the model gets reasonably close to the
data. Because the model has no mechanism to generate convergence, over time, GDP
dispersion tends to increase or remain constant, as appears to be the case in the data.*’

Table 4. Volatility and Development: Statistics for Different v and T

Poisson Parameter

Statistics Number of
Years T 0.01 0.02 0.05 0.10 0.15 0.20
100 0.271 0.342 0.588 0.766 0.696 0.568
Standard 150 0.308 0.378 0.642 0.663 0.736 0.635
Deviation of (Log) 200 0.318 0.380 0.659 0.776 0.882 0.795
GDP 250 0.314 0.391 0.712 0.858 0.990 0.916
300 0.314 0.393 0.734 0.918 1.076 1.022
100 0.350 0.391 0.717 1.019 1.051 0.881
Interquartile 150 0.412 0.513 0.739 0.998 1.162 0.892
Range of (Log) 200 0.433 0.496 0.777 1.147 1.364 1.121
GDP 250 0.422 0.486 0.826 1.210 1.266 1.235
300 0.418 0.474 0.773 1.308 1.377 1.442

The Table displays decadal statistics at the beginning of the interval of analysis (which comprises the four
decades previous to year T). The number of years T indicates the number of years during which the model
was run.

An appealing way to measure the statistical variation of volatility with the level of
development in the data is given by B -o0app, Where B is the slope regression coefficient
reported in Table 1 (equal to -0.23) and ogpp is the standard deviation of log GDP
(equal to 0.92).° We can then ask what fraction of the statistical variation in the

data can be generated by the model, by computing w, where B (T,~) and

oapp(T,7) are the model-generated slope coefficient and the standard deviation of

(log) GDP, for different values of 7" and -, reported in Tables 3 and 4, respectively.
We report the ratios in Table 5. The model reaches its maximum explanatory power

for v = 0.10 and 7" = 250. A value of v = 0.10 means that each individual technology

48The corresponding values in 2000 were 1.09 and 1.82. The data come from the World Bank’s
World Development Indicators.

49The standard deviation of log GDP increased from 0.92 to 1.09 and the interquartile range from
1.34 to 1.82 in the period 1960-2000.

%0 Alternatively, one could use the interquartile range (among other measures of dispersion). The
final results look quite similar and are available from the authors.
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5L At this value of ~, the model needs 250 years to

has a 10-year average lifetime.
reproduce the empirical patterns.’? For other sets of parameter values, the model still
performs quite well in generating a decline in volatility with the level of development
comparable to that in the data.

The simulation exercise leads us to conclude that the technological-diversification
model, though stylised, can potentially account for a substantial part of the decline in
volatility with development observed in the data. It thus highlights a hitherto neglected
feature of expanding-variety models, which makes them suitable to explain the secular

decline in volatility and its relation with development.

Table 5. Volatility and Development: Model-Generated Variation for Different v and T

Poisson Parameter
Statistics Number of
Years T 0.01 0.02 0.05 0.10 0.15 0.20
100 33% 67% 73% 72% 4% -
Fraction of empirical 150 43% 61% 68% 27% 35% 34%
variation generated by 200 61%  39%  65%  72%  46%  37%
the model
250 61% 54% 69% 79% 70% 54%
300 61% 55% 47% 56% 73% 42%

The Table displays the fraction of the statistical variation of volatility with respect to
development in the data that can be generated by the model. See text for explanations. Values
are computed at the beginning of the interval of analysis (which comprises the four decades
previous to year T). The number of years T indicates the number of years during which the
model was run.

5 Concluding remarks

We argue that technological diversification offers a promising (yet so far overlooked)
explanation for the negative relation between volatility and development. We do so
by proposing a model in which the production process makes use of different varieties
subject to imperfectly correlated shocks. Technological progress takes place as an
expansion in the number of input varieties, increasing productivity. The new insight
in the model is that the expansion in varieties can also lead to lower volatility of

!Incidentally, in the model, the (stochastic) annual depreciation rate of the economy is also =, so
it is reassuring that v = 0.10 is the value that fits best.

2Gtrictly speaking, this means that the technological diversification channel alone should have
started around the First Industrial Revolution for it to generate this correlation. In practice of course,
other channels may have delayed or anticipated the process.
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production. First, as each individual variety matters less and less in production, the
contribution of variety-specific fluctuations to overall volatility declines. Second, each
additional variety provides a new adjustment margin in response to external shocks,
potentially making productivity less volatile. In the model, the number of varieties
evolves endogenously in response to profit incentives and the decrease in volatility
comes out as a likely by-product of firms’ incentives to increase profits. We simulate
the model for a large grid of parameter values and find that, for most parametrizations,
the model can explain a substantial fraction of the statistical variation in volatility with
respect to development observed in the data.

Appendix
A Proofs
A.1 Proof of Proposition 1

Since profits are linear in n and profitability A is independent of calendar time ¢, guess
that the form of value function is V'(n,t) = wvn, where v is independent of calendar
time.

The first-order condition for optimal investment is equation (16). Equation (17), in
turn, results from substituting the guess function into the Bellman equation. We now
show that there is a unique pair of v and A satisfying equations (16) and (17), hence
the guess function is indeed the solution.

Substituting (16) into (17),

(P+7) g (N) =L/2—g(\)+ A (V).

Both sides are continuously differentiable with respect to A. At A = ~, the left-hand
side (LHS) is (weakly) less than the right-hand side (RHS) by our assumption on the
cost function. Similarly, at A = v+ p, the LHS is greater than the RHS. In between, the
LHS is growing faster (declining slower) than the RHS, so there is a unique A € [y, y+p)
solving the equation.

The comparative statics can be shown as follows. We totally differentiate the first-
order condition with respect to p, v, A and L:

(dp+dy)d + (p+7)g" A\ =dL/2 + A\g" d),

rearranging,
I\ — dL/2 — (dp +dv)g
(0 =A+7)g"
Because of the convexity of g and the condition that growth does not exceed the

discount rate, the denominator is positive. Optimal adoption intensity is then
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1. increasing with market size, L. Intuitively, if the economy has greater profitability
per variety today and greater expected profitability in future periods, then the
present, discounted value of profits per variety increases, raising the benefits to
adoption.

2. decreasing in the discount rate p. The firm always makes positive profits. Dis-
counting positive profits at a higher rate obviously makes the value of the firm
lower, and hence adoption less attractive.

3. decreasing in the failure rate . The failure rate acts as a depreciation rate, intro-
ducing additional discounting into the present value problem. Higher discounting
reduces the incentive to invest in new varieties.

4. decreasing with an upward shift in adoption costs, g. Suppose adoption costs are
Bg(), where B > 1. The first-order condition is homothetic in g and L, so the
solution under the new adoption cost is the same as under the old adoption cost
but a small market size, L/B/2. By (i), this leads to lower adoption intensity.

A.2 Proof of Proposition 2

The proof follows directly from the following lemma.

Lemma 1. Let x; follow a discrete-state Markov process with Poisson jumps between
states {E1, E, ..., Ex'}, with transition probabilities Pr(z; 1, = Ep|2, = Ei) = &, xh +
o(h). Then (i) the expected change in z; is
N
E(dzilz: = By) =Y & 4(Ei — Ey)dt,
i=1
and (ii) its instantaneous variance is

N
Var(dwz|z; = Ey) = Zflk(Ez — Ep)*dt.
i=1
Proof of Lemma 1: (i) The first jump arrives with arrival rate S~ | §; - Conditional
on a jump occurring, the probability of state n is &, ;/> &, and the jump size is
(E, — E)) in this case. Taking expectation over all possible states, we get the result.
(ii) Note that the instantaneous volatility equals the instantaneous second moment,
E[(dx;)?|z; = Ej|, because E(dxz|z; = Ej)? is of order O(dt?). Then applying (i) to
jumps of size (E,, — E})?, we obtain the result of the lemma.
Using the lemma, substitute in E,, = n and §;;,, = Ak if i = k+ 1, §;, = vk if
i=k—1,and ¢, ; = 0 otherwise. Then E(dn) = (A—~)ndt and Var(dn) = (A+v)ndt.
Divide by n to obtain the result.
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A.3 Proof of Proposition 3
With ¢ = 2, aggregate output is Y = NL. We then have to show that
E(dN/N) = z dt,
independent of N and t¢.
From equation (18),
(A with Pr =1 — O(h)
A=Y m; /N with Pr=~vh+ o(h)
N(t+h)— N(t) : :
N(t) M= SN mi /N with Pr = yh+ o(h)

(AL —mg /N with Pr =~h + o(h)

Taking expectations and using the fact that Z,]j:l Zf\;k m; = N, we get

N(t+h) — N(b)
. { N

Taking the limit as h — 0, we obtain the result. The innovation intensity A is indepen-

] = (A= + o(h).

dent of n and ¢, and so is the expected growth rate x. The solution for x immediately
follows from the solution for the firm-level A.

A.4 Proof of Proposition 4

We have to show that -
Var(dN/N) =~ Z s2dt.

k=1
From equation (18),
N(t+h)—N®HI*
N(t) I
(\2h? with Pr=1— O(h)

A2 — N m2/N? — 20\ SN m /N with Pr = vk + o(h)

AR — N 2 /N? — 2RSS mi /N with Pr = vk + o(h)

(212 — SN m2/N? — 20hmg /N with Pr = ~h + o(h)
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Taking expectations and taking h — 0, we get

dN? NN )2 >
E<_N2 ) :72—(213\[’“2 ) dtzstidt,
k=1 k=1

where the last equality follows from the definition of s,. The variance is the same,
because

Var(dN/N) _E(dN?/N?) — E(dN/N)? _

dt dt
o) ‘ )\—’)/2h2 o]
vyt -t ST S
k=1 k=1

A.5 Proof of Proposition 5

We will show that in an economy where the overall number of varieties is N, volatility
is bounded from above by ~v/N. Since GDP is linear in N, the statement in the
proposition follows immediately.

Take an economy with N distinct varieties, in which the average firm uses N < N
varieties. (Recall that the measure of firms is one, so the total number of varieties can
be thought of as the average.) To simplify notation, define M = Zfik m;. Volatility
equals v | 52, where s, = Mj/N is the share of variety k in overall GDP. Each
variety k is used by at most a unit measure of firms, M; < 1. What is the highest
possible volatility in this economy conditional on its level of GDP per capita, N7 Note
that this exercise differs from the one discussed on page 25, where we looked at the
unconditional minimum and maximum of volatility, also changing average GDP at the
same time.

We need to find the technology distribution {s;} that maximizes:

with s, = M, /N. The maximum is attained when the first N varieties are used by all
firms, M, =1 for k =1, ..., N and no other varieties are used by any firms, M = 0 for
all k = N +1,..., N. The maximum volatility is 723,61\[:1(1/]\7)2 =~/N.

It may seem counterintuitive at first that an even distribution of varieties maxi-
mizes volatility. However, this is not an even distribution of all N varieties, as those
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with index higher than N are not used at all. This is in fact the most concentrated
distribution of N varieties that is consistent with an average variety use of N.

Also note for completeness that a (strict) lower bound on volatility conditional on
N is given by 1/N?. We solve the minimum problem—r{nh}qv fo:l s2 subject to the
Sk

same constraints as above. Suppose there are N distinct varieties in the economy, the
first of which is used by all firms, M; = 1 by our ranking assumption. Aggregate GDP
is then 1 4 22\722 M;, = N. To minimize volatility, all varieties with indexes above 1
are going to be used in the same quantity, My = (N — 1)/ (N - 1). This leads to a

volatility of
1 (1-1/N)?

N? N_1
Clearly, this is greater than 1/N? for any finite N, hence the lower bound.

B Technology Adoption under Risk Aversion and Financial
Autarky

In this Appendix we discuss technology adoption when agents are risk-averse and risk
pooling is not possible. Each firm is owned by a risk-averse individual, whose only
source of income is the profit of the firm. Utility exhibits risk aversion with «' > 0,
u” < 0, u(0) > —o0, 4/ (0) < oco. These latter assumptions ensure the finiteness of the
value of the firm even if there is a positive probability that the firm profits (and hence
consumption) eventually become zero.

The value of the firm with n varieties at time ¢ is defined as lifetime expected utility,

V(n,t) = E, /00 e Pu{A(s)n(s) — g[A(s)|n(s)} ds. (23)

=t

The Bellman equation characterizing the firm’s problem is
pV(n,t) = mAaX{u[A(t)n —g(Mn]
+ A [V(n+1,t) — V(n,t)] (24)
+yn[V(n—1,t) — V(n,t)]
+ }llirr(l)E [V (n,t+ h) — V(n,t)]/h},
s.t. A(t) — g(A) > 0. (25)
This is the same as (12) with the exceptions that (i) flow utility is a concave function

of firm profits, and (ii) we rule out borrowing so that adoption has to be financed from
current profits.
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Proposition 6. Optimal technology adoption intensity, \(n,t) is strictly positive for
all n > 0 and t.

Proof. Because ¢g(0) = 0, the non-negative profit constraint provides a positive upper
bound on A. If the constraint is binding, A is positive. Otherwise we can use the
first-order-condition for optimal adoption,

u[At)n — g(M)n]g' (N) =V (n+ 1,t) — V(n,t). (26)

The properties of v’ and ¢’ ensure that there will be a unique positive A for each n as
long as V(n+1,t) — V(n,t) > 0. This condition is easy to verify. It is obvious that
V(n+1,t) > V(n,t), because the firm can always throw away the additional variety
and replicate its profits with n varieties. We can also show that it is strictly better off
with more varieties.

The value of a firm with n products is V(n,t) defined by (23). Now calculate a
lower bound for the expected discounted utility if the firm adds a variety. Suppose the
firm does not change its adoption efforts but keeps them at A\(n). Let us denote the
value of this strategy by V(). It is clear that V(z,t) > V(x,t) for all  and ¢, because
the firm cannot lose by adjusting its adoption intensity optimally.

Now suppose that the additional variety is useless, V(n + 1,t) = V(n,t). In this
case the firm does not innovate, and is making profits A(t) per variety. The flow prof-
its the additional variety generates while working are strictly positive, which ensures
a(t) > u(t) for all t < T, 11, because u' > 0 even if the consumer is risk averse. Because
the new variety is expected to have a positive lifetime (7; > 0 with probability 1),
we have that V(n +1,t) > V(n,t), a contradiction. Hence V(n + 1,t) > V(n,t) and
V(n+1,t) > V(n,t). O

The proof relies on the property that new varieties lead to higher profits. This is why
firms have an incentive for technological diversification even in the complete absence
of financial markets. Of course, the magnitudes may vary with the degree of financial
development and technology adoption may be faster or slower in financial developed
economies. However, we demonstrated that financial deepening is not required for
technological diversification to work.

The result that the adoption intensity is positive for all n depends on the functional
form assumptions about the cost of adoption. In particular, the Inada conditions ensure
that it is always optimal to devote some resource to adoption as long as the marginal
benefit is positive. Of course, if the marginal cost of adoption is bounded away from
zero, there is a range of positive but small marginal benefits for which adoption intensity
will be zero. This does not alter the result that financial development is not a necessary
pre-condition for technological diversification.
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