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Abstract

Risk-free interest rates and the VIX index comove negatively on average, as predicted
by precautionary savings. But this comovement turns positive on FOMC days. This
pattern is consistently observed across a diverse array of risk-free interest rates, includ-
ing nominal, real, swap, short-term, and long-term rates. Our high-frequency analysis
reveals that the positive impact of monetary policy shocks on financial market risk
drives this result. We provide an explanation for these findings in a model where
levered investors akin to financial intermediaries hold and price a risky asset, such
as equity. Upon an unexpected positive monetary policy shock, equilibrium interest
rates and levered investors’ borrowing costs increase persistently. This raises investors’
leverage and the volatility of stochastic discount factor, leading to lower risk appetite
and amplified financial market risks.
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1 Introduction

What is the relation between equilibrium interest rates and financial market risk? On the

one hand, standard asset pricing models predict a negative relation induced by precautionary

savings during times of heightened risk in the economy. On the other hand, recent literature

emphasizes the potential transmission of monetary policy to risk perceptions and sentiment in

financial markets beyond cost-of-capital and credit channels (Bauer, Bernanke, and Milstein

(2023), Kashyap and Stein (2023)). Hence, monetary policy may induce a positive relation

between interest rates and financial market risk to the extent that tighter monetary policy

increases interest rates and risk simultaneously.

In this paper, we show that the comovement between interest rates and financial market

risk measured by the VIX index is negative on average, but positive on Federal Open Market

Committee (FOMC) announcement days. This pattern is common to a wide spectrum of

risk-free interest rates in the U.S. across maturities, inflation exposure, and markets (i.e.,

swaps vs. bonds). Using intraday data, we show that the positive comovement between

interest rates and risk on FOMC announcement days is entirely driven by the tight window

around the announcement.

We argue that the impact of monetary policy on risk is inherently related to cost of

financing and leverage effects. In particular, we propose a model where a representative

investor such as a financial intermediary uses short-term debt to finance risky asset holdings

such as the aggregate stock market portfolio. Positive monetary policy shocks raise the

real equilibrium interest rate and the investor’s leverage persistently. Such a shock makes

the investor’s marginal utility conditionally more volatile and raises the conditional return

volatility of the risky asset, elevating the VIX index. We illustrate this mechanism in the

model and show that its quantitative predictions are consistent with the data. In particular,

interest rates and VIX comove negatively on non-FOMC days due to precautionary savings
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but the comovement turns positive on FOMC days as a result of the causal effect of monetary

shocks on financial market risk.

We start by showing that daily changes in U.S. government bond yields have a signifi-

cantly negative relation with daily changes in the VIX index during the period from January

1995 to September 2022. However, the relation is significantly different on non-FOMC and

FOMC days, and turns positive on FOMC days. We show that these patterns hold for both

real and nominal Treasury bonds as well as overnight indexed swap (OIS) rates, suggesting

that they are not driven by the impact of monetary policy on convenience yields or inflation

expectations. Furthermore, we find similar effects for both short term and long term bonds

(from 3 months to 10 years) consistent with the impact of monetary policy on long-term in-

terest rates (Cochrane and Piazzesi (2002), Gürkaynak, Sack, and Swanson (2005), Hanson

and Stein (2015)).

Our next step in the empirical analysis is the high frequency identification of the comove-

ment between interest rates and VIX on FOMC days using intraday data on the VIX index,

VIX futures, and monetary policy shocks from Nakamura and Steinsson (2018). We show

that the positive relation between daily changes in interest rates and the VIX on FOMC

days is entirely captured by their comovement in the 30-minute period around (from 10

minutes before to 20 minutes after) the announcement. This result is driven by FOMC an-

nouncements where interest rates and the stock market move in opposite directions, which

is the sample with arguably weaker Fed information effects (Cieslak and Schrimpf (2019),

Jarociński and Karadi (2020)). The positive comovement between interest rates and VIX

on FOMC days is not purely driven by the risk premium component of VIX because we

find that monetary policy shocks have predictive power for the future realized stock market

volatility.

We then present a stylized model to shed light on the mechanisms behind the relation
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between interest rates and financial market risks. We assume that a representative investor

holds a risky asset that delivers dividends as in a Lucas tree economy. However, the model de-

viates from traditional representative agent endowment economies in two dimensions. First,

we assume that the representative investor finances the risky asset holding partially with risk-

free short-term debt. As a result, the net endowment of the investor is given by dividends

net of interest payments in the spirit of intermediary asset pricing models (He and Krish-

namurthy (2013)). The second feature is that we embed monetary policy shocks modeled

as transitory shocks to the cost of leverage similar to Coimbra and Rey (2023). Monetary

policy shocks in our model occur at a deterministic frequency and are designed to capture

the unexpected component of scheduled FOMC announcements reflected in interest rates.

In the model, there is a feedback loop between the investor’s endowment growth and

the equilibrium interest rate. When the interest rate is higher, the investor’s expected

endowment growth is lower because the risky asset’s expected dividend growth is constant

but future interest payments are elevated. The strength of this relation increases in leverage.

At the same time, the interest rate is increasing in the investor’s expected endowment growth

due to the standard intertemporal smoothing channel. The slope of this relation is the inverse

of the elasticity of intertemporal substitution (EIS) as in standard models. The equilibrium

response of the investor’s expected endowment growth and the interest rate to shocks is

determined such that both of these conditions are satisfied at all times. In particular, a

positive monetary policy shock exogenously increases expected endowment growth because

it increases the one-period interest payment to the monetary authority that has a mean-

zero balance sheet. This channel leads to lower current net endowment and increases the

equilibrium interest rate persistently which amplifies the impact of a one-time monetary

policy shock on the interest rate and leverage.

The conditional volatility of the stochastic discount factor (SDF) is increasing in the
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interest rate because of the impact of leverage. If interest rates are higher, the representative

investor spends a larger fraction of the dividend from the risky asset on interest payments.

Consequently, the growth of residual cash flows, that constitute the investor’s endowment,

becomes more volatile. As a result, a positive monetary policy shock raises SDF volatility

even if the volatility of the risky asset’s dividend growth is unchanged. We interpret this

result as the causal effect of monetary policy shocks on risk appetite in financial markets.

When marginal investors finance their asset holdings using leverage, an exogenous rise in the

interest rate raises the effective quantity of risk and acts as if investors became more risk

averse. This mechanism is consistent with Bauer, Bernanke, and Milstein (2023) who discuss

the role of shifts in risk appetite in the transmission of monetary policy to financial markets.

Our model suggests that shifts in risk appetite are an inherent feature of monetary policy

transmission through levered investors’ cost of financing. Importantly, tightening monetary

policy lowers the risk appetite of investors even if there is no increase in the fundamental risk

of cash flows from asset holdings. This effect is driven by the change in investors’ exposure

to cash flow risks rather than a shift in the structural risk aversion parameter.

We evaluate the quantitative implications of the model in a calibration that targets the

average real interest rate, VIX dynamics, the average leverage of financial intermediaries,

and the response of bond yields to monetary policy shocks. After calibrating the model, we

investigate its implications for the relation between interest rates, VIX, and monetary policy

shocks. The model delivers realistic magnitudes for the comovement of interest rates and VIX

on both non-FOMC and FOMC days. In particular, the negative relation on non-FOMC

days is driven by the precautionary savings effect resulting from the exogenous variation

in the volatility of the risky asset’s dividend growth. However, on FOMC days, monetary

policy shocks are positively associated with the daily change in VIX due to the increase in

conditional SDF volatility. Moreover, the VIX declines on FOMC days on average due to the
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drop in the uncertainty associated with the monetary policy shock. The impact of monetary

policy is strong enough to explain the significant difference in the comovement between the

interest rates and VIX on non-FOMC and FOMC days.

Our paper is related to the literature studying the impact of monetary policy on asset

prices. Bernanke and Kuttner (2005) argue that the negative reaction of the stock market

to interest rate hikes are largely driven by a spike in risk premiums. This finding motivates

a recent strand of literature studying the link between monetary policy and risk premiums.

For instance, Drechsler, Savov, and Schnabl (2018) argue that higher rates increase the

opportunity cost of liquidity buffers for banks which decreases the demand for risky assets

and increases risk premiums. In recent work, Pflueger and Rinaldi (2022) propose a model

where monetary policy shocks increase risk aversion in an extended version of the habit

model by Campbell and Cochrane (1999) augmented with New Keynesian features. Our

model puts forward an alternative mechanism whereby leverage plays the key role in driving

the positive effect of monetary policy shocks on conditional SDF volatility.

Alternatively, Kekre and Lenel (2022) develop a model where tightening monetary shocks

redistribute wealth to agents with lower propensity to take risk. In contrast, our model uses

leverage as the main mechanism to explain the interplay between interest rates and risk

on non-FOMC and FOMC days. Monetary shocks in our model are one-time subsidies to

levered risk-averse investors but they change the exposure of investors to fundamental shocks

rather than redistribute wealth.

Empirically, Bauer, Bernanke, and Milstein (2023) document a positive relation between

monetary policy shocks and willingness to take risks. Our findings on the interest rate-risk

relation is robust to using their risk appetite index. They also point out the potential role of

leverage in the transmission of monetary policy to risk which we systematically analyze in

our model. Our findings are broadly consistent with the empirical literature that has studied

5



the relation between interest rates, monetary policy, and risk (Vähämaa and Äijö (2011),

Bekaert, Hoerova, and Duca (2013), Hartzmark (2016)). In particular, Dell’Ariccia, Laeven,

and Suarez (2017) present direct evidence on the risk-taking channel of monetary policy for

the U.S. banking system.

Our model is is developed in the spirit of asset pricing models that emphasize the role

of investors’ leverage such as financial intermediaries (e.g., Adrian and Shin (2010), Brun-

nermeier and Sannikov (2014), Santos and Veronesi (2022)). In particular, He and Krishna-

murthy (2013) model constrained financial intermediaries that use leverage and determine

equilibrium asset prices. The distance to the constraint in their model explains the behavior

of asset prices in crisis times. While we do not model leverage constraints, the representative

levered investor in our model can be interpreted as a financial intermediary who clears the

risky asset market. The crucial feature for our empirical findings is leverage itself which

facilitates the transmission of monetary policy shocks to conditional risks in asset returns.

Furthermore, we document a positive response of intermediaries’ interest expense to mon-

etary shocks using data on primary dealers and broker-dealers motivated by the literature

studying the empirical relevance of intermediary leverage for asset prices (Adrian, Etula, and

Muir (2014), He, Kelly, and Manela (2017)).

Our paper is organized as follows. In Section 2, we introduce our empirical evidence

on the comovement between interest rates and risk with a particular emphasis on the high

frequency evidence on FOMC days. Section 3 presents our model, explicitly illustrating our

channel using tractable analytical approximations and using the calibrated model to show

the quantitative implications. Section 4 concludes.

6



2 Empirical evidence

This section introduces the empirical evidence that provides the basis for our subsequent

model and quantitative evaluation. We start by documenting the relation between govern-

ment bond yields and the VIX index on non-FOMC and FOMC days. We then use intraday

data to identify a direct link between the surprise component of monetary policy announce-

ments and VIX, and provide evidence that this link explains the differences in the relation

between yields and VIX on non-FOMC and FOMC days.

2.1 Data

For our analysis, we use data on interest rates, monetary policy shocks, and the VIX index

and futures. The baseline sample spans the period from January 1995 to September 2022

given the availability of monetary policy shocks from Nakamura and Steinsson (2018) in

this period. The starting date of the sample is later for some our analyses based on data

availability. We provide a detailed description of data sources in Appendix A and summary

statistics in Appendix Table A.1.

2.2 Risk-free interest rates and the VIX

We start our analysis by examining the relation between daily changes in government bond

yields and in VIX, with a particular focus on comparing this relation between non-FOMC

and FOMC days. To do so, we introduce a variable ∆Yield which is defined as the first

principal component (PC) of daily changes in government bond yields with maturities of

3, 6, and 12 months.1 We normalize ∆Yield such that it has the same volatility as daily

changes in the 12-month yield.
1We use yields up to 12 months to compute ∆Yield to be consistent with the computation of monetary

policy shocks in the literature, e.g., Nakamura and Steinsson (2018) and Bauer and Swanson (2023).
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Table 1
Bond yields and VIX

(1) (2) (3) (4)
FOMC -1.317∗∗∗ -1.527∗∗∗ -1.226∗∗∗

(0.300) (0.308) (0.311)

∆VIX -0.373∗∗∗ -0.381∗∗∗ -0.403∗∗∗

(0.060) (0.060) (0.062)

FOMC × ∆VIX 0.590∗∗∗

(0.175)
Observations 6930 6930 6930 6930
Adjusted R2 0.003 0.025 0.029 0.031

Notes. This table reports results from regressing the first principal component of daily changes in the 3-
month, 6-month, and 12-month U.S. government bond yields on an FOMC day dummy, the daily change
in the VIX index, and their interaction term. The sample period is from January 1995 to September 2022.
Robust standard errors are reported in parentheses. ∗, ∗∗, and ∗∗∗ indicate statistical significance at the
10%, 5%, and 1% levels, respectively.

Column 1 of Table 1 shows that yields have declined on FOMC days more than non-

FOMC days in our sample period. This result is consistent with Hillenbrand (2023) who

documents that most of the secular decline in interest rates over the last decades is at-

tributable to yield changes in a window around FOMC announcements. Column 2 of Table

1 further shows that changes in VIX (∆VIX) and ∆Yield are negatively correlated. A 1

standard deviation (SD) increase in ∆VIX is associated with a 0.16 SD decline in ∆Yield.

This effect is consistent with the precautionary savings effect. In other words, economic

shocks that cause an increase in conditional risk also cause an increase in the desire to save

in risk-free assets lowering their yields. This effect is robust to controlling for the average

difference in ∆Yield between non-FOMC and FOMC days (Column 3 of Table 1).

However, the relation between ∆Yield and ∆VIX is significantly different on FOMC

compared to non-FOMC days. On FOMC days, the coefficient of ∆Yield on ∆VIX is sig-

nificantly higher relative to non-FOMC days, and the ∆Yield-∆VIX comovement is slightly
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positive (Column 4 of Table 1). Panel A of Figure 1 illustrates this finding graphically where

the robust negative relation between ∆Yield and ∆VIX on regular days becomes a weakly

positive relation on FOMC days.

The results in Table 1 are robust to using individual bond yields and are not driven by

inflation expectations. In particular, Appendix Table A.2 shows that same results hold using

individual bond yields up to 10-year maturity. For all yields, the relation between ∆Yield

and ∆VIX is significantly negative on non-FOMC days. The interaction between the FOMC

dummy and ∆VIX is significantly positive, and its magnitude is slightly larger than the

negative coefficient on ∆VIX. Furthermore, Appendix Table A.3 shows that our findings in

Table 1 remain unchanged using TIPS yields instead of nominal Treasury yields suggesting

that expected inflation dynamics on FOMC days do not explain the results. Finally, we

replace ∆VIX by the risk index developed by Bauer, Bernanke, and Milstein (2023) which

is designed to measure daily changes in risk appetite. Appendix Table A.4 shows that risk

appetite, which can be interpreted as an inverse risk premium, is positively correlated with

yields on non-FOMC days and there is a significant negative interaction with the FOMC

dummy consistent with the results obtained using ∆VIX in Table 1.

The difference in the ∆Yield-∆VIX relation between FOMC and non-FOMC days may

seem puzzling at first, especially if one interprets this finding based on the precautionary

savings mechanism, which predicts that a positive shock to risk in the economy should lead

to lower rates. We instead argue that the difference is rooted in the causal effect of monetary

policy shocks on risk for levered investors. In particular, our model in Section 3 shows that

unexpected changes in interest rates due to monetary policy shocks impact conditional risk

exposure for levered investors. Hence, the comovement between ∆Yield and ∆VIX on non-

FOMC days can be driven by shocks to economic risks and the accompanying precautionary

savings effect. In contrast, FOMC days are characterized by direct shocks to risk-free interest
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rates which affect levered investors’ exposure to shocks and, as a result, the VIX index.

Next, we ask whether the evidence in Table 1 is driven by changes in the risk-free rate

embedded in bond yields or other features of Treasury securities (e.g., a convenience yield

as in Krishnamurthy and Vissing-Jorgensen (2012)). We use the overnight indexed swap

(OIS) rates as an alternative risk-free rate proxy because OIS rates are argued to have

identical payoffs as Treasury bonds but do not feature the associated balance sheet costs

and convenience yields (He, Nagel, and Song (2022), Du, Hébert, and Li (2023), Doshi, Kim,

and Seo (2023)). We repeat the analysis in Table 1 using changes in the overnight indexed

swap (OIS) rates ∆OIS and report results in Table 2. Table 2 shows that the conclusions

drawn from the comovement between ∆Yield and ∆VIX remain unchanged when we replace

∆Yield with ∆OIS.2

Table 2
Overnight indexed swap rates and VIX

(1) (2) (3) (4)
FOMC -0.618∗ -0.713∗∗ -0.475

(0.327) (0.331) (0.311)

∆VIX -0.174∗∗∗ -0.177∗∗∗ -0.196∗∗∗

(0.067) (0.067) (0.069)

FOMC × ∆VIX 0.479∗∗

(0.233)
Observations 5681 5681 5681 5681
Adjusted R2 0.001 0.007 0.007 0.009

Notes. This table reports results from regressing the first principal component of daily changes in the 3-
month, 6-month, and 12-month OIS rates on an FOMC day dummy, the daily change in the VIX index, and
their interaction term. The sample period is from January 2000 to September 2022. Robust standard errors
are reported in parentheses. ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5%, and 1% levels,
respectively.

2Panel B of Figure 1 illustrates the relation between ∆OIS and ∆VIX on FOMC and non-FOMC days.
Appendix Table A.5 shows that the results in Table 2 also hold using individual OIS rates up to 10-year
maturity rather than the first PC of yields up to 1 year.
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In sum, changes in risk-free rates and risk measured using VIX are unconditionally neg-

atively correlated but the correlation has a large and significantly positive component on

FOMC days. This result is driven by the common risk-free rate component across nominal

government bond yields, real yields, and OIS rates. Next, we use intraday data on FOMC

days to identify the impact of monetary shocks on risk in tighter time windows.

2.3 VIX dynamics around monetary policy shocks

A common approach to measure unexpected monetary policy shocks is to use high frequency

changes in yields around FOMC announcements (Gürkaynak, Sack, and Swanson (2007b),

Nakamura and Steinsson (2018), Bauer and Swanson (2023)). The underlying assumption

is that interest rate movements within a 30-minute window (from 10 minutes before to 20

minutes after the announcement) around scheduled Fed announcements are causally driven

by the unexpected component of monetary policy news. In this section, we examine whether

monetary policy shocks measured as the 30-minute change in interest rates following Naka-

mura and Steinsson (2018) (hereafter, NS shocks) explain the positive relation between

∆Yield and ∆VIX on FOMC days relative to non-FOMC days.3

We obtain intraday data on the VIX index and investigate the relation between NS shocks

and intraday changes in VIX. Panel A of Table 3 first shows results from regressing the daily

∆VIX on NS shocks (Column “Daily”). We find that VIX drops on average by -0.537 on

announcement days and it is significantly positively correlated with the NS shock. That is, if

interest rates rise in the 30-minute window around the FOMC announcement, VIX will drop

less than usual or even increase. Next, we find that the relation between ∆VIX and the NS

shock is indeed driven by their comovement in the 30-minute FOMC window. While VIX
3Nakamura and Steinsson (2018) construct the shocks as the first principal component of 30-minute

changes in five futures quotes: federal funds rate futures maturing immediately after the FOMC meeting,
the same futures maturing after the next meeting, and Eurodollar futures on 3-month interest rate expiring
in 2, 3 and 4 quarters after the FOMC meeting.
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Figure 1. Daily changes in VIX and risk-free rates

Panel A: Yields

Non-FOMC days FOMC days

Panel B: OIS rates

Non-FOMC days FOMC days

Notes. This figure plots binscatters of daily changes in interest rates (U.S. government bond yields in Panel
A, OIS rates in Panel B) against daily changes in the VIX index on non-FOMC and FOMC days. The red
solid line is the fitted linear line. The vertical red dashed line is at the sample average of the daily change in
VIX in each sample. The sample period is from January 1995 to September 2022 for U.S. government bond
yields and from January 2000 to September 2022 for OIS rates.
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drops from last day’s close to the 30-minute FOMC announcement period on average as well,

its movement in this period is not correlated with the NS shock (Column “Pre-FOMC”).

Indeed, all of the comovement between the NS shock and the daily ∆VIX can be attributed

to the 30-minute FOMC window (Column “FOMC”). The NS shock does not have significant

impact on the post-FOMC VIX change on the FOMC days either (Column “post-FOMC”).

Table 3
Intraday VIX dynamics and monetary policy shocks

Daily Pre-FOMC FOMC Post-FOMC
Panel A: Intraday VIX index: 1/1995 - 9/2022

Constant -0.537∗∗∗ -0.239∗∗∗ -0.157∗∗∗ -0.141∗

(0.126) (0.071) (0.038) (0.083)
NS 0.309∗∗ 0.032 0.183∗∗∗ 0.094

(0.140) (0.060) (0.048) (0.084)
Observations 219 219 219 219
Adjusted R2 0.022 -0.004 0.092 0.001

Panel B: Intraday VIX futures: 5/2004 - 9/2022
Constant -0.316∗∗∗ -0.236∗∗∗ -0.098∗∗∗ 0.018

(0.105) (0.058) (0.025) (0.065)
NS 0.172 -0.020 0.161∗∗∗ 0.031

(0.153) (0.076) (0.035) (0.083)
Observations 147 147 147 147
Adjusted R2 0.006 -0.006 0.164 -0.006

Panel C: Intraday VIX index: 5/2004 - 9/2022
Constant -0.546∗∗∗ -0.259∗∗∗ -0.207∗∗∗ -0.080

(0.180) (0.095) (0.051) (0.114)
NS 0.496∗ 0.043 0.288∗∗∗ 0.165

(0.254) (0.107) (0.075) (0.153)
Observations 147 147 147 147
Adjusted R2 0.029 -0.006 0.133 0.003

Notes. This table reports results from regressing changes in the VIX index on NS shocks on FOMC days.
The dependent variable is the daily change in VIX in the column “Daily”, the change from the previous
day’s close to 10 minutes prior to the FOMC announcement in the column “Pre-FOMC”, the change from 10
minutes before to 20 minutes after the FOMC announcement in the column “FOMC”, and the change from
20 minutes after the FOMC announcement to market close in the column “Post-FOMC”. Robust standard
errors are reported in parentheses. ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5%, and 1%
levels, respectively.
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The results in Panel A of Table 3 suggest that VIX dynamics on FOMC days are domi-

nated by the impact of monetary policy shocks. Therefore, we argue that the shocks driving

the comovement between ∆VIX and ∆Yield are different on non-FOMC days and FOMC

days. For instance, on FOMC days, monetary shocks raising interest rates exogenously also

increase conditional risk in financial markets. However, interest rates change endogenously

on non-FOMC days based on prevailing economic conditions. If the economy and markets

become riskier for reasons other than monetary policy, equilibrium interest rates decline due

to a flight to safety by investors. Our model in Section 3 builds on this intuition.

The evidence in Panel A of Table 3 also suggests that the measured NS shock plausibly

captures the unexpected component of monetary policy news. While VIX starts to decline

already in the pre-FOMC period, the pre-FOMC movements are unrelated to the upcoming

monetary shock realization. That is, monetary policy uncertainty may start being resolved

prior to the announcement explaining the VIX decline in the pre-FOMC period. However,

the NS shock captures the remaining unexpected component.

We repeat the exercise in Panel A of Table 3 with intraday VIX futures prices (Panel

B) which are based on actual prices from a liquid market rather than the synthetic VIX

index.4 The VIX futures sample period is shorter but the results convey the same message:

there is a strong positive relation between ∆VIX and NS shocks in the 30-minute FOMC

announcement window suggesting that interest rate shocks dominate VIX movements on

FOMC days.5 Panel C shows that the evidence holds with the high-frequency VIX index in

the VIX futures sample as well.6

We further illustrate the average high frequency VIX futures dynamics around the FOMC
4We use VIX futures that are the closest to maturity on the FOMC day conditional on having at least

three days to maturity. VIX futures prices typically move less than the index itself because they capture
expected rather than realized VIX.

5See Appendix Figure A.1 for a binscatter of VIX changes and NS shocks.
6Appendix Tables A.6 and A.7 show that the evidence in Tables 1 and 3 are robust to excluding NBER

recession periods from the sample.
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Figure 2. Intraday VIX futures dynamics and monetary policy shocks

Notes. The left panel of the figure plots the average cumulative VIX futures price changes from 120 minutes
before to 120 minutes after the FOMC announcement. The right panel plots the average cumulative VIX
futures price changes for the subsample of positive and negative NS shocks, relative to the unconditional
average in the left panel. The gray region is the 30-minute window around the FOMC announcement. The
sample period is from May 2004 to September 2022.

announcement window in the left panel of Figure 2. VIX futures decline significantly in the

30-minute FOMC announcement window consistent with the evidence in Table 3. Moreover,

the right panel of Figure 2 shows that positive NS shocks are associated with an increase

in VIX futures prices during the announcement window relative to the average decline in

the left panel, while negative NS shocks lead to a further decline in VIX illustrating the

evidence in Panel B of Table 3. The divergence of average VIX conditional on the sign of

NS shocks is primarily driven by the variation within the announcement window, while the

post-announcement period is characterized by further divergence.7

7Appendix Figure A.2 shows that the similarity of VIX dynamics before announcements and the diver-
gence of average VIX based on the sign of NS shocks in a longer window from 24 hours before to 48 hours
after the announcement.
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2.4 VIX on FOMC days and monetary policy transmission

The impact of monetary policy shocks on asset prices depends on the transmission mech-

anism: through the interest rate channel as in New Keynesian models or through the Fed

information effect. Our evidence so far suggests that positive interest rate shocks on FOMC

days increase risk in the stock market. Our model in Section 3 interprets this finding from

the perspective of levered investors whose cost of capital increases due to positive inter-

est rate shocks. Alternatively, asset price reactions to monetary policy shocks may reflect

information effects where the Fed reveals the state of the economy to the public at announce-

ments (Nakamura and Steinsson (2018), Cieslak and Schrimpf (2019), Jarociński and Karadi

(2020)) or the public learns about the Fed’s policy function at announcements (Bauer and

Swanson (2023)). For instance, a positive interest rate shock may reveal positive news indi-

cating that expected economic growth is higher than the public’s perception prior to the Fed

announcement. Jarociński and Karadi (2020) argue that a surprise policy tightening raises

interest rates and reduces stock prices because of heightened cost of capital. In contrast, the

information effect would predict that a positive interest rate shock raises growth expecta-

tions, and hence stock prices. As a result, the relation between ∆VIX and NS shocks may

differ based on whether an FOMC announcement primarily induces the cost of capital or

the information effect.

Following Jarociński and Karadi (2020), we split the sample of FOMC announcements

into those with opposite and same signs for the high frequency response of interest rates

(NS shock) and the stock market (S&P 500 futures prices). Out of 221 scheduled FOMC

announcements in our sample, NS shocks and the change in S&P500 futures have different

signs for 138 meetings and the same sign for 83 meetings during the FOMC announcement

window. We then regress daily ∆VIX as well as the 30-minute ∆VIX from futures on the NS

shock in both samples, and report results in Table 4. The results show that NS shocks have
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Table 4
The role of the Fed information effect

Daily VIX index High freq. VIX futures
All Diff. sign Same sign All Diff. sign Same sign

NS 0.316∗∗ 0.406∗∗∗ -0.230 0.161∗∗∗ 0.229∗∗∗ -0.450∗∗∗

(0.137) (0.150) (0.280) (0.035) (0.027) (0.159)
Constant -0.532∗∗∗ -0.425∗∗∗ -0.763∗∗∗ -0.098∗∗∗ -0.077∗∗∗ -0.070∗

(0.125) (0.155) (0.199) (0.025) (0.026) (0.036)
Observations 221 138 83 147 91 56
Adjusted R2 0.024 0.057 -0.006 0.164 0.468 0.358

Notes. This table reports results from regressing changes in the VIX index on NS shocks on FOMC days.
In the “Daily VIX index” columns, the dependent variable is the daily change in VIX and the sample period
is from January 1995 to September 2022. In the “High freq. VIX futures” columns, the dependent variable
is change in VIX futures during the 30-minute FOMC announcement window and the sample period is from
May 2004 to September 2022. “Diff sign.” (“Same sign”) is the sample of FOMC announcements where the
NS shock and the change S&P 500 futures during the FOMC window have different (the same) signs. Robust
standard errors are reported in parentheses. ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5%,
and 1% levels, respectively.

a positive impact on ∆VIX only in the sample with a different sign which is consistent with

the cost of capital channel. In the sample with the same sign, NS shocks have essentially

no impact on daily ∆VIX and a negative impact on ∆VIX in the FOMC announcement

window. This result is consistent with the information effect: when an unexpected rise in

interest rates signals higher expected growth, stock market valuations rise which can lower

the risk exposure of levered investors and the VIX index as a result. Hence, our results are

entirely driven by FOMC announcements where the Fed information effect is likely to be

least prevalent as a monetary transmission mechanism.

2.5 VIX, yields, and monetary policy shocks

Finally, we ask whether the impact of monetary shocks on the VIX on FOMC days (Table

3) explains the difference in the daily ∆VIX-∆Yield comovement on non-FOMC and FOMC

days (Table 1). For this analysis, we make ∆VIX the dependent variable and investigate
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its comovement with ∆Yield and monetary policy shocks. Column 1 of Table 5 shows that

the VIX change is lower on FOMC days compared to non-FOMC days consistent with the

evidence on daily VIX changes in Table 3. We then add ∆Yield and its interaction with the

FOMC dummy, and reproduce the result from Table 1 that the loading of ∆VIX on ∆Yield

is negative on non-FOMC days but significantly larger and positive on FOMC days (Column

2 of Table 5).

Table 5
VIX, yields, and monetary policy shocks

(1) (2) (3) (4)
FOMC -0.552∗∗∗ -0.511∗∗∗ -0.552∗∗∗ -0.582∗∗∗

(0.128) (0.130) (0.126) (0.138)

NS 0.316∗∗ 0.377∗

(0.137) (0.192)

∆Yield -0.072∗∗∗ -0.072∗∗∗

(0.010) (0.010)

FOMC × ∆Yield 0.106∗∗∗ 0.050
(0.033) (0.043)

Observations 6930 6930 6930 6930
Adjusted R2 0.003 0.031 0.004 0.031

Notes. This table reports results from regressing the daily change in the VIX index on an FOMC day
dummy, the NS shock (set to zero on non-FOMC days), the first principal component of daily changes in
the 3-month, 6-month, and 12-month U.S. government bond yields, and its interaction with the FOMC
dummy. The sample period is from January 1995 to September 2022. Robust standard errors are reported
in parentheses. ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

To understand the role of monetary policy shocks, we regress ∆VIX on NS shocks which

are zero on non-FOMC days and represent the high frequency (30-minute) change in interest

rates on FOMC days. Column 3 of Table 5 shows that ∆VIX is positively correlated with the

NS shock, controlling for the unconditional negative effect of FOMC days on ∆VIX.8 That
8Focusing on FOMC days, Bauer, Bernanke, and Milstein (2023) also find that a surprise tightening of

monetary policy leads to a persistent increase in VIX.
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is, while the VIX drops on announcement days on average consistent with the resolution of

monetary policy uncertainty, unexpected shocks to interest rates have a positive effect on the

VIX. Crucially, the NS shock weakens the positive association between ∆VIX and ∆Yield

on FOMC days (Column 4 of Table 5) which suggests that unexpected interest rate shocks

on FOMC days have a positive impact on the VIX, breaking the negative relation between

∆VIX and ∆Yield on non-FOMC days.9

Table 6
Future realized volatility and monetary policy shocks

(1) (2) (3) (4)

NS 1.066∗∗ 1.740∗∗

(0.485) (0.820)

∆Yield 0.003 -0.250

(0.101) (0.184)

Lagged RV 0.587∗∗∗ 0.611∗∗∗ 0.588∗∗∗ 0.592∗∗∗

(0.102) (0.106) (0.107) (0.102)

Observations 221 221 221 221

Adjusted R2 0.428 0.440 0.425 0.446

Notes. This table reports results from regressing realized volatility (RV) between the current and next
FOMC announcements on the NS shock, the first PC of 3-month, 6-month, and 12-month yield changes, and
the lagged RV between the current and last FOMC announcements. Realized volatility is measured as the
square root of the annualized sum of squared log stock market returns from one day after the current FOMC
announcement to two days before the next FOMC announcement. The sample period is from January 1995
to September 2022. Robust standard errors are reported in parentheses. ∗, ∗∗, and ∗∗∗ indicate statistical
significance at the 10%, 5%, and 1% levels, respectively.

The VIX index captures the market’s risk-neutral expectation of stock market volatility

over the next month. Hence, the positive relation between NS shocks and VIX changes could

be driven by the risk premium associated with volatility fluctuations, or they could also be

related to physical expectations of future stock market volatility. We examine the relation
9Appendix Table A.8 shows that the impact of NS shocks on ∆VIX also explains the positive relation

between ∆VIX and ∆OIS on FOMC days.
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between NS shocks and realized stock market volatility between the current and the next

FOMC day, and find that NS shocks are a significant predictor of future realized volatility

(Table 6).10 Strikingly, the daily change in yields on FOMC days does not predict volatility.

This evidence suggests that the relation between monetary policy shocks and the VIX on

FOMC days is not purely driven by variance premium fluctuations, and is related to changes

in expected stock market return volatility.

In sum, VIX drops on FOMC days on average but the magnitude of this drop depends

on the direction of monetary policy shocks. When interest rates unexpectedly rise on FOMC

days, conditional stock market risk drops less than usual, while unexpected declines in the

interest rate result in particularly large declines in risk. This pattern is dominantly driven

by VIX movements in the 30-minute window around FOMC announcements, and explains

differences in the comovement of interest rate and risk dynamics between non-FOMC and

FOMC days. Rate changes are negatively correlated with risk changes on non-FOMC days

consistent with precautionary savings, but the positive impact of monetary policy shocks

on financial market risks results in a large positive component in the relation between rates

and risk on FOMC days. These results are robust across alternative proxies for interest

rates and risk, suggesting that they are not driven by factors such as inflation, balance

sheet costs, or convenience yields. The impact of monetary policy shocks on VIX is even

stronger in a sample of FOMC announcements where the Fed information effect is unlikely

to be prominent. In light of this evidence, we next provide a model with a representative

investor holding risky assets using leverage and investigate the causal link from monetary

policy shocks to conditional risk dynamics.
10To isolate the effect on future volatility, we follow Cieslak and Vissing-Jorgensen (2021) and compute

realized volatility from the first day after the FOMC day until two days before the next FOMC day.
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3 Model

We present a model that sheds light on our empirical findings in Section 2. Our empirical

evidence consists of asset price responses in the bond and options markets at the daily fre-

quency and, on FOMC days, at higher frequencies. Therefore, our results are likely to be

driven by sophisticated financial institutions that trade frequently and use leverage (Adrian,

Etula, and Muir (2014)). Hence, we start by presenting model assumptions including the

key assumption that the representative investor uses leverage to finance risky asset holdings.

We then inspect the mechanism using approximate analytical solutions for the key variables

in the model, in particular, the effect of monetary policy shocks on interest rates and con-

ditional risk. We then calibrate the model using standard target moments and investigate

its implications for the empirical evidence on the relation between interest rates and risk

dynamics in financial markets.

3.1 Model setup

We assume that there is a representative investor that holds one unit of a risky asset, e.g.

the aggregate stock market portfolio, which pays a dividend Dt at time t. Dividend growth

is given by
Dt+1

Dt

= 1 + g + ϵt+1, (1)

where g is the average growth rate, ϵt+1 ∼ N(0, σt) with ϵt being serially independent, and

σt follows a Markov process.

The representative investor in the risky asset market finances part of the risky asset

holdings using risk-free short-term debt. In particular, we assume that the investor maintains

a 1-period liability of Lt = sDt with s > 0. The investor’s interest payment at t+ 1 depends

on whether there is a scheduled monetary policy shock (FOMC days) or not (non-FOMC
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days) at t+1. If t+1 is a non-FOMC day, then the interest payment at t+1 is given by rtLt

where rt is the 1-period interest rate. We calibrate the model at the daily frequency later in

Section 3.5. Hence, rt can be interpreted as the overnight interest rate that represents the

cost of leverage for investors such as financial intermediaries.

We model monetary policy shocks mt as an exogenous change in the cost of leverage for

period t. That is, a monetary policy shock mt+1 changes the interest payment at t+ 1 from

rtLt to (rt + mt+1)Lt. We assume that mt+1 is drawn independently from the distribution

N(0, σm) once every Tm periods (on FOMC days), and is zero on all other days (non-FOMC

days):

mt+1


∼ N(0, σm) if τt = 1

= 0
(2)

where τt ∈ {1, ..., Tm} denotes the time until the next monetary policy shock. In what

follows, we write mt+1 ∼ N(0, σmt) where σmt = σm if τt = 1, and σmt = 0 otherwise.

Monetary policy shocks mt capture interest rate surprises on scheduled FOMC days.

Therefore, the shocks occur at a deterministic frequency, are not predictable, and are assumed

to be iid over time for simplicity. For instance, a negative value for mt indicates that

funding costs for investors’ leverage are lower than expected on day t. This approach to

modeling monetary policy shocks is similar to the borrowing subsidy experiments in He and

Krishnamurthy (2013). Furthermore, Coimbra and Rey (2023) also model monetary policy

shocks as exogenous changes in the cost of external funds. While these shocks are persistent

in Coimbra and Rey (2023), we model them as one-time shocks which endogenously have a

long-lasting impact on the equilibrium interest rate as we will discuss below in Section 3.4.11

11The monetary policy shock is akin to a (positive or negative) borrowing subsidy from a monetary
authority. As in Coimbra and Rey (2023), we assume that the monetary authority is a deep-pocketed
institution that can finance the subsidy to the representative levered investor −mtLt−1 at any point in time,
while the average subsidy is zero, i.e. E[−mtLt−1] = 0.
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In the spirit of He and Krishnamurthy (2013), the levered investor plays the key role in

determining asset prices in our model. Therefore, we assume a household sector that has a

very simple structure. In particular, we assume that there is a measure N of overlapping gen-

eration households each period that live for two periods and have log utility. Each household

receives risky labor income wDt, which is proportional to the risky asset’s dividends, and

decides how much to save by lending to the levered investor. Households take the interest

rate rt as given and exclusively save through risk-free lending. Appendix B shows that the

optimal consumption-savings decision of households implies that savings are equal to a con-

stant fraction of their labor income. As a result, the liabilities of the representative investor

are equal to household savings Lt = sDt. While our assumptions on the household sector

provide a way to think about the levered investor’s balance sheet in equilibrium, households

play no further role in equilibrium asset prices.

3.2 Cash flows and asset pricing

The representative investor receives dividends from the risky asset holdings every period

and makes interest payments. We call the dividends from the risky asset minus the interest

payments the “representative investor’s endowment”.12 As a result, the endowment is given

by:

Et = Dt − s(rt−1 +mt)Dt−1. (3)

Hence, the crucial feature of our model compared to standard a Lucas tree economy is that

the endowment of the representative investor is not exogenously given but depends on the

endogenous interest rate and exogenous monetary policy shocks.
12The investor’s endowment is equal to dividends from asset holdings minus interest expense similar to

operating profits of a financial intermediary. We assume that the proceeds from the difference between old
debt’s repayment and new debt’s issuance given by Lt − Lt−1 does not affect the investor’s endowment. In
the calibrated model, we find that the annualized value of this term is 1.14% of asset holdings. See Section
3.5.1 for details.
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We assume that the representative investor consumes their endowment and has constant

relative risk aversion (CRRA) preferences:

Ut = Et

[ ∞∑
τ=0

βτ E
1−γ
t+τ

1 − γ

]
, (4)

where β is the time discount factor and γ is relative risk aversion.13 As a result, the stochastic

discount factor (SDF) is given by

Πt+1 = β
(
Et+1

Et

)−γ

, (5)

where Et[Πt+1R̃t+1] = 1 for any random return R̃. Furthermore, the 1-period risk-free interest

rate is given by

rt = 1
Et[Πt+1]

− 1. (6)

We can write the investor’s endowment growth as

Et+1

Et

=
Dt+1

Dt
− s(rt +mt+1)

Et

Dt

, (7)

which follows from equation (3). The expected endowment growth of the investor is decreas-

ing in the current interest rate rt due to higher interest payments at t + 1 which will make

Et+1 smaller relative to Dt+1. Furthermore, positive dividend growth shocks translate to

positive endowment growth shocks for the investor. In contrast, positive monetary policy

shocks mt+1 raise the cost of debt and lower cash flows at t+ 1.

Importantly, the endogenous state variable in the economy is the ratio of investor endow-

ment to dividends:
Et

Dt

= 1 − s(rt−1 +mt)
Dt−1

Dt

, (8)

13In the quantitative analysis, we ensure that Et remains positive in the entire state space so that the
utility function is always well-defined.
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which represents the investor’s equity ratio in cash flow terms. That is, the investor’s asset

holdings deliver the cash flow Dt and the investor receives Et after servicing outstanding

debt.

Substituting (8) into (7), we observe that endowment growth depends on the risky asset’s

dividend growth as well as the growth of interest payments. Therefore, interest rate dynamics

directly affect endowment growth dynamics and the stochastic discount factor. As such,

investors’ leverage introduces rich dynamics into the model even though the risky asset’s

dividend growth is serially uncorrelated and follows a simple stochastic process.

3.3 Model solution

We solve for the interest rate rt and the price-dividend ratio of the risky asset Pt

Dt
using the

representative investor’s Euler equations. Our model has three state variables: the volatility

of dividend growth, σt, time to the next monetary shock, τt ∈ {1, ..., Tm}, and the ratio of

endowment to dividends, Et

Dt
. While the dynamics of σt and τt are exogenous, the distribution

of future Et

Dt
is endogenous and depends on the current interest rate. The interest rate rt is

given by a function f of state variables:

rt = f
(
σt, τt,

Et

Dt

)
= 1

Et

β (1+g+ϵt+1−s(rt+mt+1)
Et
Dt

)−γ
 − 1.

Conditional on the state variables, we can easily solve for the interest rate function f
(
σt, τt,

Et

Dt

)
.

To solve for the risky asset’s Pt

Dt
as a function of state variables, we rearrange the Euler equa-
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tion Et[Πt+1R̃t+1] = 1 with R̃t+1 = Pt+1+Dt+1
Pt

as:

Pt

Dt

= h
(
σt, τt,

Et

Dt

)
= Et

[
Πt+1

(
1 + Pt+1

Dt+1

)
Dt+1

Dt

]

= Et

β
1 + g + ϵt+1 − s(rt +mt+1)

Et

Dt

−γ (
1 + h

(
σt+1, τt+1,

Et+1

Dt+1

))
(1 + g + ϵt+1)

 .

We numerically solve for h
(
σt, τt,

Et

Dt

)
recursively on grids for the state variables. Once

we obtain rt and Pt

Dt
as a function of σt, τt, and Et

Dt
, we can compute all conditional moments

and simulate returns.

3.4 Inspecting the mechanism

Before we explore the quantitative implications of our model, we illustrate the interest rate

and conditional risk dynamics using Taylor approximations of the model solution. We first

show the impact of monetary shocks on the equilibrium interest rate and the role of leverage.

We then illustrate the role of monetary policy shocks for the dynamics of conditional SDF

volatility. Appendix C includes the derivations for the results in this section.

3.4.1 Interest rate dynamics and monetary shocks

We start with a first order Taylor approximation of the numerator and the denominator of

endowment growth in equation (7) which results in the following expression for ∆et+1 =

log
(

Et+1
Et

)
:

∆et+1 ≈ g + ϵt+1︸ ︷︷ ︸
dividend growth

−s(rt +mt+1) + s(rt−1 +mt)
1

1 + g + ϵt︸ ︷︷ ︸
interest payment growth

. (9)

Endowment growth in equation (9) has two components: the risky asset’s dividend growth

and the growth of interest payments. In particular, the last two terms in equation (9) show
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that if the interest rate is low at t relative to t− 1, interest payments decline from t to t+ 1,

which has a positive effect on Et[∆et+1].

The facts that ∆et+1 is conditionally normal under the approximation and the represen-

tative investor has CRRA utility imply

rt ≈ − log β + γEt[∆et+1] − 1
2γ

2V art(∆et+1). (10)

Plugging the conditional expectation and variance of endowment growth from (9) into

(10) and solving for rt, we can write the law of motion for the interest rate as follows:

rt ≈ = − log β + γg

1 + γs
+ γ

1 + γs

s

1 + g + ϵt

(rt−1 +mt) − 1
2

γ2

1 + γs
(σ2

t + s2σ2
mt). (11)

Equation (11) shows that changes in rt on non-FOMC days are driven by dividend shocks

ϵt and shocks to volatility σt. A higher dividend growth shock lowers expected growth as

can be seen in the last term of equation (9). Higher dividends at t imply higher Et at t, but

lower Et+1 relative to Et due to higher interest payments at t + 1. Lower expected growth

then leads to a lower interest rate due to intertemporal smoothing effects represented by the

second term in (10). Moreover, volatility σt has a negative impact on the interest rate rt

due to the precautionary savings effect. Therefore, exogenous time variation in σt induces a

negative relation between changes in interest rates and conditional risk.

To understand the implications of leverage for the interest rate dynamics in (11), it is

helpful to compare it with the special case of no leverage (s = 0) where the interest rate

takes the standard form rt = − log β + γg − 1
2γ

2σ2
t . Leverage introduces the second term in

(11) which is responsible for a serial dependence between rt−1 and rt, and the transmission

of monetary shocks mt to the equilibrium interest rate rt.

In the model, shocks jointly change the Et[∆et+1] and rt, and there are two relations
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Figure 3. Monetary policy shocks and equilibrium interest rates

Notes. This figure plots the relation between the annual interest rate in the model and the expected en-
dowment growth of the representative investor. We set s = 15, γ = 1.5, β = 0.98, σ2

t = 0.0174, , σ2
mt = 0,

and g = 0.02. The blue dashed line plots the relation between rt and Et[∆et+1] based on equation (9) with
mt = 0. The purple solid line plots the relation between rt and Et[∆et+1] based on equation (10). The red
dotted line (yellow dashed-fotted line) is equivalent to the blue dashed line except it assumes mt = 0.12%
(mt = −0.12%).

between Et[∆et+1] and rt that both have to hold in equilibrium. First, leverage implies that

Et[∆et+1] is decreasing in rt (equation (9)) and the slope of this relation is −s. That is, if rt is

higher holding other quantities constant, Et[∆et+1] is lower due to higher interest payments

at t + 1. Second, rt is increasing in Et[∆et+1] based on investors’ Euler equation and the

slope of this equation is the inverse of EIS which is equal to risk aversion γ under CRRA

utility (equation (10)). That is, when expected growth is high, the investor’s willingness

to save is low due to the intertemporal smoothing effect pushing the interest rate up. The

equilibrium interest rate is at the fixed point where both of these relations are satisfied.

Figure 3 illustrates this intuition. The blue dashed line shows the leverage effect and the

purple solid line shows the Euler equation effect. The interest rate and expected growth are

jointly determined where these two lines cross.
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The effect of a monetary shock on the equilibrium interest rate is also determined by the

leverage and Euler equation effects. A positive monetary shock mt > 0 in isolation raises

Et[∆et+1] by exogenously lowering endowment at t and leaving endowment at t+1 unaffected

keeping everything else constant (equation (9)). However, this in turn raises rt (equation

(10)) which lowers Et[∆et+1] (equation (9)). Hence, the response of the rt and Et[∆et+1] to

mt is determined jointly by the leverage effect in (9) and the Euler equation effect in (10).

The red dotted line in Figure 3 illustrates how the leverage-induced relation between rt and

Et[∆et+1] changes when mt goes from zero to a positive value. While the slope of the line

stays at −1/s, the intercept goes up by 1
1+g+ϵt

mt. As a result, the equilibrium interest rate

goes up because the Euler equation relation is quite steep compared to the leverage-induced

relation. When the equilibrium interest rate goes up due to a monetary shock, it stays high

persistently due to the same channel resulting in the law of motion in (11).

Equation (11) shows that a monetary policy shock mt translates into a shock to the

equilibrium interest rate by a factor of γs
1+γs

1
1+g+ϵt

> 0 which is close to one for large values

of γs. And a unit change in rt translates into a change in rt+1 by a factor of γs
1+γs

1
1+g+ϵt

as well.

Therefore, even though mt is just a one-time shock to the interest rate, it has a persistent

impact on interest payments endogenously. This channel has two important implications.

First, monetary shocks affect long term yields as well due to a persistent change in short

term rates. Second, even if the effective subsidy by the monetary authority is small, it has

a much larger impact on the cumulative interest payments over time due to the persistent

change in the equilibrium interest rate.

3.4.2 Leverage and risk

To illustrate the impact of interest rate dynamics on conditional risk, we use a second

order approximation of the model. In this case, the conditional variance of the log SDF
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πt+1 = log β − γ∆et+1 is given by

V art(πt+1) ≈ γ2 [1 − g + srt]2 (σ2
t + sσ2

mt) + ζ(σt, σmt, s, γ), (12)

where ∂ζ/∂σt > 0 and ∂ζ/∂σmt > 0.

Equation (12) shows that the volatility of the SDF depends on the interest rate rt. In the

calibrated model in Section 3.5, we have 1 − g + srt > 0 in the simulated population which

implies that V art(πt+1) is increasing in rt.14 The positive relation between SDF volatility

and the interest rate is the direct consequence of leverage: higher interest rates increase debt

payments and lower the residual cash flows (i.e., endowment) for levered investors, making

endowment growth more volatile. This effect vanishes if the investor is not levered, i.e. s = 0,

and as a result, the SDF volatility is only driven by the exogenous volatility process σt.

The dependence of SDF volatility on the interest rate links monetary shocks to movements

in risk which is the core message of our paper. Exogenous monetary shocksmt directly impact

the equilibrium interest rate rt as illustrated in Section 3.4.1. Equation (12) implies that

monetary shocks also change V art(πt+1) due to their impact on the interest rate.15 This

relation can be interpreted as the causal effect of monetary policy shocks on risk appetite

(Bauer, Bernanke, and Milstein (2023)). This channel operates through an increase in the

risk exposure for levered investors, and its asset pricing implications are akin to an exogenous

increase in risk aversion as in the habit model of Campbell and Cochrane (1999).

What do these insights imply for the comovement between interest rates and conditional

risk? The answer lies in the nature of the shock driving their joint variation. Exogenous
14This condition will be violated if rt becomes highly negative. That is, rt < − 1−g

s . For instance, suppose
that g = 0.02 in annualized terms. With a P/D of 30 for the risky asset and targeting a leverage ratio
sD/P = 0.5, we have s = 15. As a result, the condition is violated if rt < −0.065. While our calibrated
model in Section 3.5 is at the daily frequency, it is close to this example in annualized terms and unrealistically
low interest rates do not occur within the simulated population.

15In particular, we consider ∂V art(πt+1)
∂mt

= ∂V art(πt+1)
∂rt

∂rt

∂mt
where ∂V art(πt+1)

∂rt
> 0 under reasonable param-

eters as illustrated above and ∂rt

∂mt
> 0 as shown in equation (11).
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positive shocks to volatility σt lower the interest rate rt due to the precautionary savings

effect. While an interest rate decline has a dampening effect on the SDF volatility, the

increase in σt dominates in the calibrated model in Section 3.5. In contrast, a direct increase

in rt due to an exogenous monetary policy shock mt (that is uncorrelated with fundamental

volatility σt) also increases SDF volatility (equation (12)). This gives rise to a positive

comovement between conditional risk and interest rates. Hence, consistent with the empirical

evidence in Section 2, the leverage channel induces a positive relation between changes in

interest rates and conditional risk on FOMC days, which can undo the negative relation

induced by the precautionary savings effect on all days.

Another implication of equation (12) is that conditional SDF volatility, on average, drops

on FOMC days. On the day prior to an FOMC day, we have τt = 1 and σmt > 0 while we

have τt = Tm and σmt = 0 on the FOMC day. Hence, our model predicts that conditional

volatility falls on FOMC days on average, and positive (negative) monetary policy shocks

will lead to an increase (decrease) in risk relative to the average monetary policy uncertainty

resolution effect.

3.5 Quantitative analysis

3.5.1 Calibration and target moments

We assume that the dividend growth variance σ2
t evolves according to the following process:

σ2
t = exp(νt) where νt+1 = (1 − ρ)ν̄ + ρνt + ηt+1, (13)

and ηt+1
iid∼ N(0, σν).

We calibrate the model at a daily frequency consistent with the empirical evidence in

Section 2. When calibrating moments related to the risky asset, we consider empirical
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Table 7
Model parameters

Parameter Value
Relative risk aversion, γ 1.5
Time discount factor, β 0.99984
Mean dividend growth, g 7.8585e-05
Average log variance, ν̄ -9.5813
Persistence of log variance, ρ 0.98
Volatility of log variance, σν 1.0079
Leverage parameter, s 3780
Volatility of monetary shock, σm 2.3938e-06
Days between monetary shocks, Tm 31

Notes. This table reports the parameter values from the baseline calibration. The model is calibrated at a
daily frequency.

moments for aggregate equity. For instance, the VIX index corresponds to the expected

volatility of S&P 500 index returns. Hence, we assume that the representative investor holds

the stock market index itself or an asset portfolio that has similar dividend dynamics as

aggregate equity, and finances these asset holdings partially with short-term risk-free debt.

The model has nine parameters and Table 7 reports the parameter values in our calibra-

tion. We set the average number of days between monetary shocks Tm to 31 which is the

average number of business days between scheduled FOMC announcements in the period

from January 1995 to September 2022. We also fix average dividend growth g to an annu-

alized value of 2% and risk aversion to 1.5 which are both within the standard values used

in the literature.

This procedure leaves us with six parameters which we use to target six empirical mo-

ments listed in Table 8. In what follows, we discuss the parameter values based on the target

moments that they affect the most. In particular, we set the annualized value of β to 0.96

targeting the average real 1-year interest rate of 0.40% which is the average rate published

by Cleveland Fed based on the methodology in Haubrich, Pennacchi, and Ritchken (2012).
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The volatility of the 1-year interest rate is 0.65% in the model which is lower than 1.78% in

the data. Even though expected endowment growth is volatile due to variation in interest

payments, the leverage effect (high rates lowering expected growth in equation (9)) stabilizes

expected growth leading to low interest rate volatility. The interest rate dynamics in our

model are therefore different from recursive utility models where expected growth is time-

varying but EIS is assumed to be high to avoid high interest rate volatility (e.g., Bansal and

Yaron (2004)).

For the leverage parameter s, we use the target debt-to-asset ratio of 0.55 from He and

Krishnamurthy (2013) which is close to the average ratio for financial intermediaries in their

empirical sample and the unconditional average debt-to-asset ratio in their model. Even

though we do not model a leverage constraint, the representative investor in our model

can represent the financial intermediation sector whose cash flow dynamics driven by their

leverage, and whose preferences determine equilibrium asset prices. The amount of interest-

bearing debt for the representative investor in our model is given by sDt and the asset value

is equal to the value of the risky asset Pt, resulting in sDt/Pt for the debt-to-asset ratio.

This results in an average annualized log price-dividend ratio of 3.26 for the risky asset in

the model which is close to the historical average for the aggregate U.S. stock market.

We calibrate the parameters, ν̄, σν , and ρ, for the volatility process targeting the average,

volatility, and daily persistence of the VIX index in our sample period.16 Finally, we set the

volatility of monetary policy σm targeting the high frequency response of interest rates to

a one standard deviation monetary shock. In particular, we find that the sensitivity of

the four-quarter Eurodollar interest rate to a 1 standard deviation monetary shock in the

30-minute FOMC announcement window is 5.88bps in the data.

To compare the model and data quantitatively, we simulate the model at the daily fre-

16We compute VIX in the model as VIXt = 100
√

12 · EQ
t

∑21
τ=1 V ar

Q
t+τ−1(log(1 + rd

t+τ )) where rd
t+1 =

Pt+1+Dt+1
Pt

− 1 and EQ
t [Xt+1] = Et[Πt+1Xt+1]

Et[Πt+1] for all random payoffs Xt+1.
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Table 8
Target moments

Model

Data Median 5% 95% Population
E[rt] Average interest rate 0.40 0.66 0.07 1.46 0.71
E[sDt/Pt] Average debt-to-asset ratio 0.55 0.57 0.52 0.66 0.58
E[V IXt] Average VIX 20.12 18.08 16.52 20.76 18.32
σ(V IXt) Volatility of VIX 8.24 7.11 6.22 8.63 7.51
AC(V IXt) Autocorrelation of VIX 0.98 0.98 0.97 0.98 0.98
βrt,mt

IR response to monetary shock 5.88 5.93 5.51 6.38 5.96

Notes. This table reports the target moments in the data and in the model. Data values are for the period
from January 1995 to September 2022. In the model, we simulate 10,000 samples at the daily frequency
with the same length as the data period and report the 5th, 50th, and 95th percentile values of the model
statistics. The population statistics are obtained from a simulation path of 10,000 years.

quency and report results from a long simulation of 10,000 years (Population). We also

simulate 10,000 samples from the model that are as long as our sample period from January

1995 to September 2022. We obtain the distribution of each moment from these simulations,

and report the 50th, 5th, and 95th percentiles.

Table 8 reports the empirical target moments and their counterparts from model sim-

ulations. Overall, the model provides a good fit to the empirical target moments and all

target moments are within the 90% confidence band of their model-implied distributions. In

addition, the model implies an annual risk premium of 5.74% for the risky asset which is

close to the historical equity premium. The model delivers a high equity premium because

endowment growth for the representative investor in the model is more volatile compared

to the risky asset’s dividends. This is in contrast with typical endowment economy mod-

els with low volatility for consumption growth mimicking dynamics at the aggregate level.

In our model, we assume a leverage parameter that makes equity dividends more volatile.

The investor uses leverage and their marginal utility depends on their endowment which is
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what remains from risky asset dividends after making interest payments.17 This results in a

volatile endowment growth and SDF implying a high risk premium.18

3.5.2 Asset prices in the model

Figure 4 presents model quantities as a function of the state variable Et/Dt. Low values of

Et/Dt corresponds to states where the representative investor spends a larger fraction of Dt

on interest payments that depend on rt−1. When rt−1 is high, rt is high as well due to the

endogenous persistence of the interest rate discussed in Section 3.4.1. Panel A shows that

low Et/Dt states indeed correspond to high rt states.

Consistent with our illustration in Section 3.4.2, the SDF is more volatile when interest

rates are high (Panel B). Panel C confirms that the higher SDF volatility translates into

a higher VIX level in low Et/Dt states. Hence, higher endowment growth volatility due

to higher leverage makes equity returns conditionally more volatile even though dividend

growth volatility is exogenous and does not depend on leverage.

The similar patterns of the interest rate and the SDF volatility may seem contradictory at

first as higher SDF volatility should lower the interest rate due to the precautionary savings

effect. However, Panel D shows that low Et/Dt imples high expected endowment growth

for the representative investor dominating the precautionary savings effect and raising the

interest rate. Panel E shows that the risk premium on the risky asset is high in low Et/Dt

states consistent with a high VIX. Finally, the price-dividend ratio of the risky asset is

increasing in Et/Dt due to the total discount rate effect. Recall that expected dividend
17We assume that the change in debt Lt −Lt−1, which is assumed not to have an impact on the investor’s

endowment, is spent on other expenses. For instance, the levered investor can be seen as a financial interme-
diary as discussed above. The average ratio of the debt issuance Lt −Lt−1 to Dt−1 in the model is 29%. This
is similar to the ratio of SG&A expenses to revenue for Compustat broker-dealers (firms listed as primary
dealers by He, Kelly, and Manela (2017)) given by 29%.

18The model implies a volatility of 20% for the annualized endowment growth. This is comparable to the
dividend growth volatility for Compustat broker-dealers (firms listed as primary dealers by He, Kelly, and
Manela (2017)) given by 21%.
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growth is constant and equal to g, and therefore, does not lead to any variation in the price-

dividend ratio. In low Et/Dt states, the price-dividend ratio is low because both the interest

rate and the risk premium components of the discount rate are higher. This also implies that

leverage in cash flow terms (1 – E/D) and in asset value terms (sD/P ) behave similarly in

the model.

Figure 5 shows that the model generates a wide range of values for Et/Dt. Et/Dt has a

left-skewed distribution because lower Et/Dt implies a higher conditional volatility of ∆et+1

due to higher rt. Et/Dt goes above one only if the interest rate is negative which does not

occur frequently in the model. We observe that Et/Dt is more persistent (0.9997 at the daily

frequency) compared to σt (0.9783 at the daily frequency) making monetary shocks more

long-lived compared to volatility shocks.

Equation (8) implies that a monetary policy shock mt is a direct shock to Et/Dt in the

model. Therefore, the effects of monetary shocks on model quantities can be interpreted

using variations in Et/Dt in Figure 4. A negative monetary policy shock mt < 0 is a

subsidy to borrowers that increases Et/Dt and lowers the equilibrium interest rate. Long

term interest rates reflect expectations of future short term rates and term premiums. In

our model, the effect of monetary shocks on the short term interest rate is highly persistent.

Therefore, long term rates are responsive to monetary shocks as well. Hence, our model

provides a mechanism for the transmission of monetary policy shocks to long term interest

rates documented, e.g., by Cochrane and Piazzesi (2002) and Hanson and Stein (2015), that

is based on persistent changes in the equilibrium interest rate.19

Our model augments monetary policy shocks with an asset market where levered investors
19Kekre, Lenel, and Mainardi (2022) study the effects of monetary policy on long term rates and the

term premium in a model where monetary shocks generate a wealth effect for intermediaries similar to the
impact on levered investors in our model. They also point out a U-shaped pattern in the response of yields
to monetary shocks up to 20-year maturity. While our model implies monotonic impulse responses, we find
that the term premium responds positively to monetary shocks in our model, i.e. forward rates at 10, 20,
and 30-year maturities rise more than the expected 1-period interest rate at those horizons.

36



Figure 4. Asset prices as a function of the state variable Et/Dt

Panel A Panel B

Panel C Panel D

Panel E Panel F

Notes. This figure plots the equilibrium quantities in the model as a function of Et/Dt. We set σt to its median value and
τt = 15. Interest rate is the 12-month risk-free rate (Panel A). SDF volatility is the conditional volatility of the log stochastic
discount factor and VIX is the VIX index (Panels B and C). Expected endowment growth of the representative investor is the
expected value for ∆et+1 over the next month (Panel D). Risk premium is the annualized expected excess return on the risky
asset (Panel E). Price-dividend ratio is the risky asset’s price divided by its daily dividend multiplied by 252 (Panel F).
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Figure 5. Distribution of Et/Dt

Notes. This figure plots the distribution of Et/Dt in a model simulation with length 10,000 years at the
daily frequency.

such as intermediaries affect asset prices. For instance, He and Krishnamurthy (2013) model

levered financial intermediaries as marginal investors in financial markets. In their model,

intermediaries borrow at the risk-free interest rate similar to our model but they face a

constraint which becomes binding during crises. The constraint introduces non-linearity and

helps the model replicate asset price behavior during crisis times. Coimbra and Rey (2023)

also model levered intermediaries with a value-at-risk constraint. Both papers consider the

effects of monetary policy shocks on risk premiums in the economy as policy experiments.

While intermediary constraints are certainly crucial in explaining crisis phenomena, we focus

on the role of leverage itself in an attempt to shed light on the role of the feedback loop

between interest rates, endowment dynamics for levered investors, and asset prices. We show

that the existence of leverage in marginal investors’ balance sheets is crucial to understand

our empirical findings. Nevertheless, we interpret the relevance of a levered representative

investor for asset prices in the same spirit as intermediary-based asset pricing models. In our

model, a positive monetary policy shock mt > 0 increases the leverage of the representative

investor measured both as Et/Dt and sDt/Pt. Consistent with this evidence, we find that a
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1 standard deviation NS shock leads to a 4.3bps increase in financial intermediaries’ market

debt-to-asset ratio using the data from He, Kelly, and Manela (2017). In the data, this is

driven by the price response of financial intermediaries’ publicly traded equity. Similarly, the

price-dividend ratio of the risky asset in the model responds negatively to monetary policy

shocks, which directly affects the representative investor’s equity value and leverage.

Table 9
Regression moments

Model

Data Median 5% 95% Population
Panel A: ∆r1y

t

FOMC -0.50 -0.03 -0.76 0.75 -0.08
∆VIX -0.49 -0.45 -0.56 -0.26 -0.42
FOMC × ∆VIX 0.57 0.53 0.02 1.45 0.49

Panel B: ∆VIX
FOMC -0.54 -0.41 -0.59 -0.23 -0.40
m 0.31 0.18 0.02 0.37 0.19

Notes. This table reports results from regressing daily changes in the 1-year interest rate on an FOMC
dummy, the daily change in VIX, and their interaction term (Panel A) as well as regressing the daily change
in VIX on an FOMC dummy and monetary policy shocks (Panel B) in the data and in the model. The
monetary shock is m in the model and the NS shock in the data. Data values in Panel A are for the period
from January 1995 to September 2022. In the model, we simulate 10,000 samples at the daily frequency
with the same length as the data period and report the 5th, 50th, and 95th percentile values of the model
statistics. The population statistics are obtained from a simulation path of 10,000 years.

3.6 The comovement between VIX and interest rates

In this section, we present the implications of our model for the empirical evidence in Section

2. Specifically, we assess the model’s ability to explain the differential comovement between

VIX and interest rates on non-FOMC and FOMC days as well as the impact of monetary

shocks on VIX.

Panel A of Table 9 reports results from regressing changes in the 1-year interest rate at
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Figure 6. VIX on FOMC days in the model

Panel A: m = 0 Panel B: m > 0 and m < 0 relative to m = 0

Notes. The left panel of the figure plots the cumulative VIX change from 5 days before to 5 days after
an FOMC day (day 0) for m = 0 in the model. The right panel plots the cumulative VIX changes for a
1 standard deviation positive (blue dashed line) and negative (red dotted-dashed line) m, relative to the
unconditional average in the left panel. For this figure, we simulate a long sample where all shocks are set
to zero except m for the right panel, and σt is set to its median value.

the daily frequency on changes in VIX interacted with an FOMC day dummy. In the data,

we document that the relation is significantly negative on non-FOMC days as can be seen

from the coefficient on ∆VIX but there is a large and significantly positive loading on the

interaction term FOMC × ∆VIX. The model matches both properties of the data quite well.

Based on short samples from the model, the coefficient on ∆VIX is significantly negative

and the coefficient on FOMC × ∆VIX is significantly positive. The negative relation on

non-FOMC days is driven by the exogenous time variation in σt and the resulting move-

ments in the interest rate rt as a result of the precautionary savings effect. The positive

relation between ∆rt and ∆VIX on FOMC days can be well understood based on Panels A

and C of Figure 4. Monetary shocks mt are direct shocks to Et/Dt which induce positive

comovement between rt and VIX. That is, positive monetary shocks raise the equilibrium

interest rate (Section 3.4.1) and the conditional endowment growth risk for the representa-

tive investor through the leverage channel (Section 3.4.2). This results in a stark difference
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in the comovement of rt and VIX on non-FOMC and FOMC days.20

We also assess the direct impact of monetary shocks on the VIX in the model comparing

it to the high frequency evidence in Section 2.3. Panel B of Table 9 shows that VIX drops on

FOMC days in the model by a comparable magnitude to the average drop in the data. In the

model, this effect is driven by the resolution of monetary policy uncertainty on FOMC days.

That is, σmt drops to zero on FOMC days lowering the conditional volatility of stock returns

over the next month.21 Importantly, the magnitude of the monetary shock matters for the

change in VIX. Relative to the average drop in VIX, the response of ∆VIX is increasing in

m in the model consistent with the empirical evidence in Section 2.3. Figure 6 illustrates

this effect showing the average VIX drop in case the monetary shock is zero (Panel A) and

the deviations from the average effect in cases of 1 standard deviation positive and negative

monetary shocks. The patterns are very similar to the empirical high frequency evidence

using VIX futures data plotted in Figure 2. The impact of monetary shocks on asset return

risk is driven by the impact of the instantaneous change in the cost of financing and leverage,

changing the endowment growth volatility of the representative investor. In sum, the causal

effect of monetary shocks induces a positive and the causal effect of volatility shocks induces

a negative relation between rt and VIX.
20In the data, interest rates have been declining over our sample period. Consistent with Hillenbrand

(2023), the decline mostly occurred on FOMC days resulting in the negative coefficient on the FOMC
dummy (the data column in Panel A of Table 9). The interest rates in our model are stationary and do not
have a trend. Therefore, the median coefficient in the model is close to zero but the estimate has a large
confidence band due to strong effects of monetary shocks.

21Savor and Wilson (2013) document that the average realized stock market returns are significantly
higher on macroeconomic announcement days. Consistent with their evidence, the average daily market
return is 33.5bps on FOMC days and 3.1bps on non-FOMC days which implies an FOMC announcement
premium of 32.4bps in the data. Our model features only a small announcement premium of 1.8bps due to
the reduction of σmt from σm to zero on announcement days. Due to small number of FOMC days (i.e.,
221) in each simulated sample, the premium has a large range of values across simulations from -15.8bps at
the 5th to 18.9bps at the 95th percentile which is below the empirical value. We abstract from embedding
mechanisms such as risk sensitive preferences and imperfect information (Ai and Bansal (2018)) to focus on
the directional impact of monetary policy shocks on conditional risk in financial markets rather than the
effect of uncertainty resolution about the future path of the economy.
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3.7 Intermediaries’ interest expense and monetary shocks

The mechanism in our model operates through the impact of monetary shocks on the bor-

rowing cost for the levered investors. We consider financial intermediaries as the primary

example for the levered investor in our model. Therefore, we next verify the response of in-

termediaries’ interest expense to monetary policy shocks to validate the model mechanism.

We consider two samples of firms in Compustat to compute the share of interest expense

in revenues akin to 1−Et/Dt in the model. The first sample consists of primary dealers used

in the construction of He, Kelly, and Manela (2017)’s intermediary asset pricing factor. We

limit the sample to U.S. firms that are available in Compustat. The second sample represent

broker-dealers in the spirit of Adrian, Etula, and Muir (2014). While they use the leverage

ratio of these firms from flow of funds, we compute the interest expense for Compsustat firms

with the SIC codes 6211 and 6221 (“Security Brokers, Dealers, and Flotation Companies”

and “Commodity Contracts Brokers and Dealers”) located in the U.S. Although only 13% of

broker-dealers are also primary dealers based on our classification, primary dealers account

for 75% for the total revenue of broker-dealers.22 To obtain distinct variation, we exclude

primary dealers from the set of broker-dealers in our main results.

For each quarter and subsample of firms, we compute the sum of interest expense (Com-

pustat items xintq and tieq) and sales (Compustat item salesq). We then compute the first

difference in the ratio of interest expense to sales from one quarter to the next for firms

with available data in both quarters. And then, we compute the sum of changes in this

ratio across horizons and regress it on the NS shocks. In other words, we run predictabil-

ity regressions of the change in the interest expense share in sales using the NS shock for

different horizons and report results in Figure 7. For both primary dealers (Panel A) and

broker-dealers (Panel B), we verify that the ratio of interest expense to sales increases by
22Primary dealers are not a subset of broker-dealers and some of them are listed as depository banks, e.g.

Bank of America and J.P. Morgan.
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Figure 7. Response of intermediaries’ interest expense to monetary shocks

Panel A: Primary dealers

Panel B: Broker-dealers

Notes. The figure plots the response of the interest expense-revenue ratio for primary dealers (Panel A) and
broker-dealers excluding primary dealers (Panel B) to a 1 standard deviation NS shock. The sample period
is from 1995Q1 to 2022Q2.
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1 to 2 percentage points consistent with the model.23 As a result, our model’s mechanism

that operates through leverage in cash flow terms holds in the data and serves as a valid

assumption for why levered investors may face elevated levels of risk as a result of monetary

policy shocks.24

3.8 Stock market response to monetary shocks

The stock market response to interest rate shocks on FOMC days can differentiate between

monetary policy transmission mechanisms. In particular, higher rates may lower stock prices

due to higher bond yields lowering the value of all long dated assets including equity, or they

may raise the risk premium by increasing stock market risks or risk aversion. In a VAR

framework, Bernanke and Kuttner (2005) argue that most of the stock market reaction to

monetary shocks is driven by the expected excess return component and almost none by

expected interest rates. Following this evidence, the literature has provided explanations for

the transmission channels of monetary policy to risk premiums (e.g., Pflueger and Rinaldi

(2022), Kekre and Lenel (2022)).

In recent work, Nagel and Xu (2024) challenge the conventional wisdom by showing that

the stock market response to monetary shocks is primarily driven by yields. In particular,

they decompose the stock market response to monetary shocks into components driven by

yields and dividend futures prices. They then compute counterfactual announcement returns

by setting movements in the dividend futures price on FOMC days to zero. With this

approach, Nagel and Xu (2024) find that most of the announcement day return is attributable

to bond yields and none to risk premiums.

We employ their Nagel and Xu (2024)’s methodology to compute the fraction of the
23A 1 standard deviation monetary shock increases 1 − Et/Dt by 1pp in the model.
24Appendix Figure A.3 shows that we obtain comparable results in case of equaal-weighting the interst

expense ratio across firms and for the sample of broker-dealers without excluding primary dealers.
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stock market response to monetary shocks driven by yields in our model. We find that the

counterfactual return’s response to m shocks accounts for 77.1% of the total equity price

response.25

What drives this result in the model? A positive m lowers the representative investor’s

endowment, and hence E/D, which increases both the interest rate and the equity premium

as can be seen in Figure 4. The increase in the equity premium is due to higher leverage

while the risk-free rate increases due to higher expected endowment growth for the investor.

At the same time, we find that a positive m shock raises the term premium because long-

term bonds become riskier due to increased volatility in E/D. In sum, our model attributes

a substantial fraction of equity return variation on FOMC days to yield variation consistent

with recent findings in the literature.

3.9 Comparative statics

We next compare our baseline model with alternative specifications for leverage, volatility,

and preferences. We conduct these exercises by changing one aspect of the model at a time

and keeping all other parameters identical to those in Section 3.5.1.

We start by setting the leverage parameter to zero, i.e. s = 0. In this case, monetary

policy shocks play no role in the model and the investor’s endowment growth volatility is

equal to the dividend growth volatility of the risky asset. Panel A of Appendix Table A.9

shows that the VIX and the interest rates do not respond to monetary policy shocks in

this case. Importantly, changes in yields have a large negative loading on changes in VIX

due to precautionary savings and time-varying volatility. But the model cannot explain any

phenomena related to FOMC days by construction.
25In particular, we compute the counterfactual return (∆pB) based on the Campbell-Shiller decomposition

of price changes (∆p) into maturity-matched yield movements and dividend risk premiums. The loading of
∆pB on m is equal to 77.1% of ∆p’s loading on m. See Appendix D for details.
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Next, we drop the assumption of time-varying dividend growth volatility, and set νt =

log(σt) to a constant that is equal to its average value in our baseline calibration. This

version of the model can still generate a high level of average VIX, but does not account for

the high volatility of VIX (Panel B of Appendix Table A.9). That is, the variation in Et/Dt

generates some volatility in VIX but it is far too small compared to the data. However,

monetary policy shocks are still operational in the model. Therefore, the model still implies

additional positive comovement between interest rates and VIX on FOMC days compared

with non-FOMC days. But the model fails to account for the average negative comovement

between interest rates and VIX because the precautionary savings term explains a negligible

portion of the yield variation in the absence of time-varying volatility. Hence, time-varying

volatility helps the model generate the negative comovement on non-FOMC days and make

the orders of magnitude for regression coefficients and volatility of VIX consistent with the

data.

In our model, the EIS is an important parameter for the transmission of monetary shocks

to the interest rate as illustrated in Section 3.4.1. Therefore, we also investigate model im-

plications assuming that the representative agent has recursive preferences (Epstein and Zin

(1991)). Recursive preferences allow a separation of the elasticity of intertemporal substi-

tution (EIS) ψ and risk aversion γ as opposed to CRRA utility where ψ = 1/γ which is

equal to 0.67 ≈ 1/1.5 in our baseline calibration. Specifically, the slope of the purple line in

Figure 3 is equal to the inverse of EIS. Therefore, higher values for the EIS would imply a

weaker transmission of monetary policy shocks to interest rates which means that a larger

mt would be required to change the equilibrium interest rate by the same amount. Indeed,

when we set ψ = 1.2, the sensitivity of the interest rate to monetary shocks goes down to

5.84 (from 5.93 in the original calibration) and it goes up to 5.97 in case we lower EIS to

ψ = 0.5 (Panel A of Appendix Table A.10). The monetary transmission strength variation
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by EIS also translates into how much monetary policy shocks affect risk. In particular, a

one standard deviation monetary policy shock moves VIX by 0.12 with ψ = 1.2 and by 0.22

with ψ = 0.5 compared to 0.18 in the baseline calibration. All in all, EIS has an impact on

the transmission of monetary policy shocks to risk but the main mechanism of our model is

qualitatively consistent with different EIS values.

4 Conclusion

This paper studies the interplay between interest rates, financial market risk, and monetary

policy. We document that the comovement of interest rates and VIX is negative on non-

FOMC and positive FOMC days. Using high frequency data, we verify that this difference is

driven by monetary policy shocks. The empirical patterns are consistent across several types

of interest rates, and are not driven by inflation expctations, the Fed information effect, or

convenience yields.

We explain these findings in an endowment economy that features financial leverage and

monetary policy shocks. The model highlights that monetary policy shocks have a persis-

tent impact on equilibrium interest rates, due to investors’ leverage, and change investors’

exposure to aggregate shocks. We interpret investors’ leverage in the tradition of the inter-

mediary asset pricing literature, where monetary shocks directly impact the cost of financing

risky asset holdings. Through this channel, monetary policy has an impact on risk appetite

in financial markets, asset prices, and conditional risks.

Our model can quantitatively account for the empirical patterns regarding the joint

variation of interest rates, VIX, and monetary policy shocks. Hence, we show that the

impact of monetary shocks on risk appetite in financial markets as formulated by Bauer,

Bernanke, and Milstein (2023) can be explained through the conventional cost-of-capital

channel. Interesting avenues for future work include the endogenous response of leverage to
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monetary policy shocks, how monetary policy shocks affect financial intermediaries’ balance

sheets, as well as the real effects of the causal impact of monetary policy shocks on asset

market risks.
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Appendix

A Data sources and summary statistics

In this section, we describe the data sources and the construction of variables used in the

empirical analysis in Section 2. Table A.1 provides summary statistics for the variables.

Interest rates. We obtain Treasury yields from the constant maturity rates from FRED

(for 3 and 6 months) and the zero-coupon fitted yields constructed by Gürkaynak, Sack,

and Wright (2007a) (for 1, 2, 3, 5, 10 years). The overnight indexed swap-implied interest

rates (OIS) are obtained from Bloomberg. The inflation-indexed TIPS yields for constant

maturities (5 and 10 years) are also obtained from the FRED. We use all interest rates in

annualized basis points throughout the paper.

VIX index and futures. We obtain the daily VIX index from Chicago Board Options

Exchange (CBOE). Daily changes in VIX are computed as the difference between today’s

and yesterday’s close. The high frequency VIX index data are also from CBOE and are

available throughout our sample period except in the last three months of 2003. In the

high frequency analysis on FOMC days, we also use high frequency VIX futures data from

a private vendor starting from the introduction of VIX futures contracts in March 2004.

When computing the intraday cumulative change in VIX futures, we use the change in the

closest-to-maturity contract that still has at least three trading days to maturity.

Monetary policy shocks. We obtain monetary policy shocks from Acosta (2022) who

extends the sample period in Nakamura and Steinsson (2018) until September 2022. There is

a total of 221 scheduled FOMC meetings in our sample from January 1995 to September 2022.

Following Nakamura and Steinsson (2018), we do not include unscheduled announcements

as FOMC days because these are likely to be reactions to other concurrent economic shocks.
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B Household sector

Suppose that there is a measure N of households. Every period, a new generation of house-

holds is born, and each generation lives for two periods. We assume that households have

log utility and have a time discount factor of β. The generation born at t receives labor

income wDt at t and can choose to consume a fraction x of the labor income, and save the

rest by holding short-term debt issued by the levered investor with risk-free interest rate rt

which then finances household consumption at t + 1. As a result, a household’s problem is

given by

max
x

log(xwDt) + β log((1 + rt)(1 − x)wDt). (A.1)

The optimality condition for (A.1) implies that households consume a constant fraction

of their labor income given by x = 1
1+β

and the saving rate is given by 1 − x = β
1+β

. The

sum of savings from all households is then given by N β
1+β

wDt. Equating household savings

to levered investors’ liabilities is equivalent to setting s = N β
1+β

w.

C Model approximations

We first consider a first order approximation of log
(

Et+1
Et

)
. Equations (7) and (8) imply

∆et+1 = log
(
Et+1

Et

)
= log (1 + g + ϵt+1 − s(rt +mt+1)) − log

(
1 − s(rt−1 +mt)

1
1 + g + ϵt

)
,

(A.2)

which can be approximated as

∆et+1 ≈ g + ϵt+1 − s(rt +mt+1) + s(rt−1 +mt)
1

1 + g + ϵt

(A.3)

50



by applying log(1+x) ≈ x to both terms in (A.2). Under this approximation, the conditional

distribution of ∆et+1 is normal. Therefore, it follows from (3.3) and the normality of ∆et+1

that the log interest rate can be written as

rt = log
(

1
Et[βe−γ∆et+1 ]

)

≈ − log β + γEt[∆et+1] − 1
2γ

2V art(∆et+1).
(A.4)

Plugging in Et[∆et+1] and V art(∆et+1) implied by (A.3) and solving for rt results in the

approximate interest rate dynamics in equation (11).

To obtain the conditional SDF volatility in equation (12), consider a second order Taylor

approximation of the logarithmic function around zero: log(1 + x) ≈ x− 1
2x

2. Applying the

approximation to logarithmic terms in (A.2), we obtain

∆et+1 ≈ g − 1
2g

2 − (1 − g)srt − 1
2s

2r2
t − edt

+ (1 − g + srt)ϵt+1 − 1
2(ϵt+1)2 − s(1 − g + srt)mt+1 − 1

2s
2(mt+1)2 + sϵt+1mt+1.

(A.5)

For a standard normal variable ϵ̃ ∼ N(0, 1), we have cov(ϵ̃, ϵ̃2) = 0 and ϵ̃2 ∼ χ2
1 with

V ar(ϵ̃2) = 2. Furthermore, we have V ar(ϵt+1mt+1) = σ2
t σ

2
mt because the shocks are assumed

to be independent. As a result, the variance of πt+1 = log β − γ∆et+1 approximated as in

(A.5) is given by (12) where

ζ(σt, σmt, s, γ) = γ2
(1

2σ
2
t + s2σ2

t σ
2
mt + 1

2s
4σ2

mt

)
. (A.6)
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D Stock market response

Nagel and Xu (2024) show that the instantaneous response of log prices to a shock based on

the Campbell-Shiller decompisition is given by

∆pt = (Et+ − Et−)
∞∑

n=1
ρn−1[(1 − ρ)dt+n − xn,t+n] +

∞∑
n=1

ρn−1(fn,t− − fn,t+), (A.7)

where d is log dividend, x is the excess return of the stock index relative to the forward rate,

and fn,t is the n-period forward rate at t. The constant ρ is given by 1/(1 + exp(d̄p)) where

dp is the log dividend yield.

The first term in equation (A.8) represents the change in the dividend risk premium

relative to a maturity matched yield, and the second term represent the yield movements

themselves. As a result, the counterfactual return driven by yield movements only is given

by

∆pB,t =
∞∑

n=1
ρn−1(fn,t− − fn,t+). (A.8)

52



Table A.1
Summary statistics

Panel A: Full sample
Daily Change Level

Mean SD Median Mean SD Median Observations Sample period
VIX 0.003 1.743 -0.080 20.1 8.3 18.6 6930 01.1995–09.2022
Yield (1st PC) 0.000 4.135 0.055 6930 01.1995–09.2022
Yield (3 mo.) -0.034 4.765 0.000 218.1 212.9 156.0 6930 01.1995–09.2022
Yield (1 yr.) -0.044 4.135 0.028 243.8 215.5 182.0 6930 01.1995–09.2022
Yield (5 yr.) -0.054 5.871 -0.045 320.1 185.7 285.1 6930 01.1995–09.2022
Yield (10 yr.) -0.058 5.808 -0.205 387.4 169.2 399.9 6930 01.1995–09.2022
OIS (3 mo.) -0.039 2.522 0.000 190.5 186.9 124.1 5681 01.2000–09.2022
OIS (1 yr.) -0.037 3.878 0.042 205.6 187.0 142.3 5681 01.2000–09.2022
OIS (5 yr.) -0.055 6.197 -0.076 292.7 171.9 257.7 5681 01.2000–09.2022
OIS (10 yr.) -0.064 6.338 -0.149 352.9 164.9 312.3 5681 01.2000–09.2022
TIPS (5 yr.) 0.003 6.567 0.000 36.0 111.6 30.0 4934 01.2003–09.2022
TIPS (10 yr.) -0.015 5.148 0.000 83.2 101.1 69.0 4934 01.2003–09.2022

Panel B: FOMC days
Daily Change Level

Mean SD Median Mean SD Median Observations Sample Period
VIX -0.532 1.881 -0.430 19.9 7.9 18.2 221 01.1995–09.2022
Yield (1st PC) -1.275 4.404 -0.259 221 01.1995–09.2022
Yield (3 mo.) -1.489 4.314 -1.000 218.7 214.4 156.0 221 01.1995–09.2022
Yield (1 yr.) -0.558 5.066 -0.040 244.3 215.9 190.3 221 01.1995–09.2022
Yield (5 yr.) -0.614 7.293 -0.110 320.1 184.9 285.3 221 01.1995–09.2022
Yield (10 yr.) -0.506 6.693 0.016 387.8 167.5 398.4 221 01.1995–09.2022
OIS (3 mo.) -0.094 1.492 0.000 190.6 187.5 125.0 181 01.2000–09.2022
OIS (1 yr.) -0.778 5.048 -0.348 205.2 187.8 142.2 181 01.2000–09.2022
OIS (5 yr.) -0.982 8.272 -0.650 292.7 171.2 260.4 181 01.2000–09.2022
OIS (10 yr.) -1.009 7.804 -0.647 353.2 163.1 308.6 181 01.2000–09.2022
TIPS (5 yr.) -0.873 9.901 -1.000 36.7 113.6 28.0 157 01.2003–09.2022
TIPS (10 yr.) -0.962 8.479 0.000 83.8 101.6 63.0 157 01.2003–09.2022
NS 0.000 1.000 0.079 221 01.1995–09.2022
VIX futures -0.315 1.273 -0.250 147 05.2004–09.2022

Notes. This table reports summary statistics from daily data used in the paper. We report statistics for
levels and changes. All interest rates are reported in basis points. Panel A reports statistics for all days,
Panel B on scheduled FOMC announcement days.
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E Additional tables and figures

Table A.2
Individual yields and VIX

3 mo. 6 mo. 1 yr. 2 yr. 3 yr. 5 yr. 10 yr.
FOMC -1.369∗∗∗ -1.402∗∗∗ -0.497 -0.360 -0.358 -0.447 -0.414

(0.294) (0.292) (0.344) (0.424) (0.465) (0.493) (0.459)

∆VIX -0.256∗∗∗ -0.335∗∗∗ -0.492∗∗∗ -0.670∗∗∗ -0.751∗∗∗ -0.804∗∗∗ -0.788∗∗∗

(0.067) (0.064) (0.054) (0.058) (0.060) (0.061) (0.065)

FOMC × ∆VIX 0.517∗∗∗ 0.505∗∗∗ 0.573∗∗ 0.886∗∗∗ 1.024∗∗∗ 1.084∗∗∗ 0.910∗∗

(0.198) (0.182) (0.238) (0.289) (0.322) (0.361) (0.366)
Observations 6930 6930 6930 6930 6930 6930 6930
Adjusted R2 0.011 0.025 0.041 0.049 0.052 0.055 0.054

Notes. This table reports results from regressing daily changes in individual U.S. government bond yields on
an FOMC day dummy, the daily change in the VIX index, and their interaction term. The sample period is
from January 1995 to September 2022. Robust standard errors are reported in parentheses. ∗, ∗∗, and ∗∗∗

indicate statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table A.3
Real yields and VIX

5 yr. 10 yr.
Nominal Real Nominal Real

FOMC -0.416 -0.485 -0.409 -0.718
(0.645) (0.756) (0.594) (0.664)

∆VIX -0.846∗∗∗ -0.391∗∗ -0.862∗∗∗ -0.326∗∗∗

(0.067) (0.180) (0.072) (0.069)

FOMC × ∆VIX 1.161∗∗∗ 1.196∗∗ 0.968∗∗ 0.828∗∗

(0.404) (0.510) (0.397) (0.355)
Observations 4934 4934 4934 4934
Adjusted R2 0.072 0.014 0.078 0.015

Notes. This table reports results from regressing daily changes in 5-year and 10-year nominal U.S. government
bond yields and TIPS on an FOMC day dummy, the daily change in the VIX index, and their interaction
term. The sample period is from January 2003 to September 2022. Robust standard errors are reported in
parentheses. ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

Table A.4
Bond yields and risk index

(1) (2) (3) (4)
FOMC -1.188∗∗∗ -1.545∗∗∗ -1.234∗∗∗

(0.297) (0.305) (0.309)

Risk index 1.191∗∗∗ 1.204∗∗∗ 1.231∗∗∗

(0.115) (0.115) (0.117)

FOMC × Risk index -1.115∗∗∗

(0.397)
Observations 6844 6844 6844 6844
Adjusted R2 0.002 0.097 0.102 0.104

Notes. This table reports results from regressing the first principal component of daily changes in the 3-
month, 6-month, and 12-month U.S. government bond yields on an FOMC day dummy, the daily change in
the risk index by Bauer, Bernanke, and Milstein (2023), and their interaction term. The sample period is
from January 1995 to May 2022. Robust standard errors are reported in parentheses. ∗, ∗∗, and ∗∗∗ indicate
statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table A.5
Individual OIS rates and VIX

3 mo. 6 mo. 1 yr. 2 yr. 3 yr. 5 yr. 10 yr.
FOMC -0.068 -0.342 -0.590∗ -0.768 -0.733 -0.811 -0.992∗

(0.115) (0.250) (0.350) (0.510) (0.553) (0.598) (0.567)

∆ VIX 0.018 -0.121∗∗ -0.326∗∗∗ -0.674∗∗∗ -0.820∗∗∗ -0.965∗∗∗ -1.040∗∗∗

(0.060) (0.050) (0.056) (0.062) (0.062) (0.065) (0.070)

FOMC × ∆ VIX -0.039 0.375∗ 0.677∗∗ 1.042∗∗∗ 1.199∗∗∗ 1.281∗∗∗ 1.047∗∗∗

(0.081) (0.194) (0.275) (0.336) (0.372) (0.386) (0.339)
Observations 5681 5681 5681 5681 5681 5681 5681
Adjusted R2 -0.000 0.007 0.024 0.056 0.068 0.078 0.086

Notes. This table reports results from regressing daily changes in individual OIS rates on an FOMC day
dummy, the daily change in the VIX index, and their interaction term. The sample period is from January
2000 to September 2022. Robust standard errors are reported in parentheses. ∗, ∗∗, and ∗∗∗ indicate statistical
significance at the 10%, 5%, and 1% levels, respectively.

Table A.6
Bond yields and VIX outside of NBER recessions

(1) (2) (3) (4)
FOMC -1.054∗∗∗ -1.138∗∗∗ -0.871∗∗∗

(0.286) (0.289) (0.277)

∆VIX -0.156∗∗∗ -0.164∗∗∗ -0.191∗∗∗

(0.040) (0.040) (0.041)

FOMC × ∆VIX 0.574∗∗∗

(0.178)
Observations 6306 6306 6306 6306
Adjusted R2 0.003 0.005 0.008 0.011

Notes. This table reports results from regressing the first principal component of daily changes in the 3-
month, 6-month, and 12-month U.S. government bond yields on an FOMC day dummy, the daily change
in the VIX index, and their interaction term. The sample period is from January 1995 to September 2022
omitting NBER recession periods. Robust standard errors are reported in parentheses. ∗, ∗∗, and ∗∗∗ indicate
statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table A.7
Intraday VIX dynamics and monetary policy outside of NBER recessions

Daily Pre-FOMC FOMC Post-FOMC
Panel A: Intraday VIX index: 1/1995 - 9/2022

Constant -0.518∗∗∗ -0.197∗∗∗ -0.195∗∗∗ -0.126
(0.131) (0.073) (0.039) (0.088)

NS 0.328∗∗ 0.064 0.213∗∗∗ 0.050
(0.152) (0.069) (0.059) (0.091)

Observations 199 199 199 199
Adjusted R2 0.021 -0.002 0.111 -0.004

Panel B: Intraday VIX futures: 5/2004 - 9/2022
Constant -0.268∗∗ -0.171∗∗∗ -0.123∗∗∗ 0.026

(0.107) (0.054) (0.023) (0.070)
NS 0.210 -0.016 0.191∗∗∗ 0.035

(0.189) (0.097) (0.035) (0.111)
Observations 133 133 133 133
Adjusted R2 0.007 -0.007 0.200 -0.007

Panel C: Intraday VIX index: 5/2004 - 9/2022
Constant -0.498∗∗∗ -0.189∗ -0.266∗∗∗ -0.043

(0.189) (0.097) (0.049) (0.124)
NS 0.550∗ 0.081 0.378∗∗∗ 0.091

(0.311) (0.136) (0.076) (0.192)
Observations 133 133 133 133
Adjusted R2 0.026 -0.005 0.192 -0.005

Notes.This table reports results from regressing changes in the VIX index on NS shocks on FOMC days.
The dependent variable is the daily change in VIX in the column “Daily”, the change from the previous
day’s close to 10 minutes prior to the FOMC announcement in the column “Pre-FOMC”, the change from 10
minutes before to 20 minutes after the FOMC announcement in the column “FOMC”, and the change from
20 minutes after the FOMC announcement to market close in the column “Post-FOMC”. Robust standard
errors are reported in parentheses. ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10%, 5%, and 1%
levels, respectively. The sample periods omit NBER recessions.
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Table A.8
VIX, OIS rates, and monetary policy shocks

(1) (2) (3) (4)
FOMC -0.538∗∗∗ -0.502∗∗∗ -0.530∗∗∗ -0.536∗∗∗

(0.152) (0.150) (0.150) (0.150)

NS 0.394∗∗ 0.431∗

(0.167) (0.232)

∆OIS -0.043∗∗∗ -0.043∗∗∗

(0.015) (0.015)

FOMC × ∆OIS 0.105∗∗ 0.033
(0.045) (0.057)

Observations 5681 5681 5681 5681
Adjusted R2 0.002 0.011 0.004 0.012

Notes. This table reports results from regressing the daily change in the VIX index on an FOMC day
dummy, the NS shock (set to zero on non-FOMC days), the first principal component of daily changes in
the 3-month, 6-month, and 12-month OIS rates, and its interaction with the FOMC dummy. The sample
period is from January 2000 to September 2022. Robust standard errors are reported in parentheses. ∗, ∗∗,
and ∗∗∗ indicate statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table A.9
Models with no leverage or constant volatility

Model

Data Median 5% 95% Population

Panel A: Model with no leverage (s = 0)

Panel A.1: Target moments
E[rt] 0.40 1.79 0.70 2.79 1.73
E[sDt/Pt] 0.55 0.00 0.00 0.00 0.00
E[V IXt] 20.12 15.97 14.73 17.27 15.93
σ(V IXt) 8.24 6.43 5.66 7.17 6.44
AC(V IXt) 0.98 0.98 0.97 0.98 0.98
βrt,mt 5.88 0.02 -2.36 2.36 -0.08

Panel A.2: Regression moments for ∆r1y
t

FOMC -0.50 -0.00 -0.13 0.13 0.00
∆VIX -0.49 -16.13 -16.33 -15.90 -16.12
FOMC × ∆VIX 0.57 0.05 -0.64 0.83 -0.02

Panel A.3: Regression moments for ∆VIX
FOMC -0.54 0.00 -0.15 0.15 -0.00
m 0.31 -0.00 -0.15 0.15 0.00

Panel B: Model with constant volatility (νt = ν̄)

Panel B.1: Target moments
E[rt] 0.40 0.63 0.17 1.28 0.69
E[sDt/Pt] 0.55 0.57 0.53 0.65 0.58
E[V IXt] 20.12 19.51 18.12 21.96 19.70
σ(V IXt) 8.24 0.99 0.56 2.27 1.88
AC(V IXt) 0.98 1.00 0.99 1.00 1.00
βrt,mt 5.88 5.94 5.51 6.37 5.96

Panel B.2: Regression moments for ∆r1y
t

FOMC -0.50 9.51 8.10 10.19 8.88
∆VIX -0.49 5.25 1.24 11.40 7.04
FOMC × ∆VIX 0.57 25.20 11.43 33.53 21.10

Panel B.3: Regression moments for ∆VIX
FOMC -0.54 -0.32 -0.36 -0.31 -0.33
m 0.31 0.19 0.16 0.25 0.20

Notes. This table demonstrates model simulation results for the case of no leverage s = 0 (Panel A) and
constant volatility νt = ν̄ (Panel B). All other model parameters are as reported in Table 7. Panels A.1
and B.1 report the same statistics as in Table 8. Panels A.2 and B.2 correspond to Panel A of Table 9 and
Panels A.3 and B.3 correspond to Panel B of Table 9.
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Table A.10
Models with recursive utility

Model

Data Median 5% 95% Population

Panel A: Model with ψ = 1.2

Panel A.1: Target moments
E[rt] 0.40 0.88 0.35 1.57 1.06
E[sDt/Pt] 0.55 0.60 0.56 0.65 0.60
E[V IXt] 20.12 17.70 16.55 19.23 17.74
σ(V IXt) 8.24 7.00 6.25 7.89 7.06
AC(V IXt) 0.98 0.98 0.97 0.98 0.98
βrt,mt 5.88 5.84 5.40 6.28 5.84

Panel A.2: Regression moments for ∆r1y
t

FOMC -0.50 -0.09 -0.77 0.61 -0.09
∆VIX -0.49 -0.59 -0.69 -0.44 -0.57
FOMC × ∆VIX 0.57 0.37 -0.13 1.16 0.35

Panel A.3: Regression moments for ∆VIX
FOMC -0.54 -0.17 -0.34 0.00 -0.16
m 0.31 0.12 -0.04 0.29 0.13

Panel B: Model with ψ = 0.5

Panel B.1: Target moments
E[rt] 0.40 0.50 -0.13 1.33 0.59
E[sDt/Pt] 0.55 0.55 0.49 0.67 0.56
E[V IXt] 20.12 18.10 16.20 21.36 18.37
σ(V IXt) 8.24 7.03 6.06 8.87 7.44
AC(V IXt) 0.98 0.98 0.97 0.98 0.98
βrt,mt 5.88 5.97 5.53 6.39 5.97

Panel B.2: Regression moments for ∆r1y
t

FOMC -0.50 0.04 -0.73 0.96 -0.02
∆VIX -0.49 -0.42 -0.54 -0.22 -0.38
FOMC × ∆VIX 0.57 0.62 0.11 1.64 0.56

Panel B.3: Regression moments for ∆VIX
FOMC -0.54 -0.60 -0.80 -0.42 -0.60
m 0.31 0.22 0.05 0.41 0.22

Notes. This table demonstrates model simulation results from models with recursive utility with EIS equal
to 1.2 (Panel A) and EIS equal to 0.5 (Panel B). All other model parameters are as reported in Table 7.
Panels A.1 and B.1 report the same statistics as in Table 8. Panels A.2 and B.2 correspond to Panel A of
Table 9 and Panels A.3 and B.3 correspond to Panel B of Table 9.
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Figure A.1. VIX and monetary policy shocks

Notes. This figure plots a binscatter of daily changes in VIX against NS shocks on FOMC announcement
days (left panel) and the 30-minute change in VIX futures against NS shocks (right panel).

Figure A.2. Difference in VIX dynamics by positive and negative monetary policy shocks

Notes. This figure plots the average cumulative VIX futures price changes from 24 hours before to 48 hours
after the FOMC announcement. We first compute the average cumulative change for positive and negative
NS shocks separately, and plot the difference between the two. The sample period is from May 2004 to
September 2022.
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Figure A.3. Alternative specifications for the response of intermediaries’ interest expense
to monetary shocks

Panel A: Primary dealers (equally-weighted) Panel B: Broker-dealers (equally-weighted)

Panel C: All broker-dealers (equal-weighted) Panel D: All broker-dealers (value-weighted)

Notes. The figure plots the response of the equally-weighted interest expense-revenue ratio for primary
dealers (Panel A), broker-dealers excluding primary dealers (Panel B), all broker-dealers (Panel C) as well
as the value-weighted response of all broker-dealers including those in the primary dealer sample (Panel D)
to a 1 standard deviation NS shock. The sample period is from January 1995 to September 2022.
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