Discussion of "The Micro Anatomy of Macro Consumption Adjustments" by Guntin, Ottonello and Perez

> Corina Boar NYU

Macroeconomics and Monetary Policy Conference March 2021

This paper

- Insight: leading theories of crises have different distributional implications
 - even though they generate the same aggregate Y and C dynamics

- Data on the consumption response to aggregate shocks in the distribution
 - $-\,$ can discriminate between leading theories

- Find support for view that crises are shocks to trend growth
 - consistent with permanent income hypothesis

My assessment

• Very clever idea, I wish I had come up with it!

- Testing workhorse models is important work
 - understand limitations, identify avenues for improvement

- This discussion:
 - permanent income hypothesis
 - measurement
 - comments on framework and measurement

- Special case: quadratic utility, $\beta (1 + r) = 1$, no borrowing constraint
- Consumption equals permanent income

$$c_t = \frac{r}{1+r}a_t + \frac{r}{1+r}\sum_{j=0}^{\infty} \left(\frac{1}{1+r}\right)^j \mathbb{E}_t y_{t+j}$$

• Consumption dynamics

$$\Delta c_t = \frac{r}{1+r} \sum_{j=0}^{\infty} \left(\frac{1}{1+r}\right)^j \underbrace{\left(\mathbb{E}_t - \mathbb{E}_{t-1}\right) y_{t+j}}_{\text{revision in expected earnings}}$$

- Income process: $y_t = \bar{y} + \rho y_{t-1} + \varepsilon_t$, where $\mathbb{E}\varepsilon_t = 0$
- Consumption response to income shocks: $\Delta c_t = \frac{r}{1+r-\rho} \varepsilon_t$
- Special cases
 - 1. $\rho = 0$: $\Delta c_t = \frac{r}{1+r} \varepsilon_t$
 - consume annuity value of transitory shocks
 - $-\,$ if constrained consumption responds one-to-one to transitory shocks
 - 2. $\rho = 1$: $\Delta c_t = \varepsilon_t$
 - consumption responds one-to-one to permanent shocks
 - also true if constrained

- Income process: $y_t = \bar{y} + \rho y_{t-1} + \varepsilon_t$, where $\mathbb{E}\varepsilon_t = 0$
- Consumption response to income shocks: $\Delta c_t = \frac{r}{1+r-\rho} \varepsilon_t$
- Special cases
 - 1. $\rho = 0$: $\Delta c_t = \frac{r}{1+r} \varepsilon_t$ credit tightening view
 - consume annuity value of transitory shocks
 - if constrained consumption responds one-to-one to transitory shocks
 - 2. $\rho = 1$: $\Delta c_t = \varepsilon_t$
 - consumption responds one-to-one to permanent shocks
 - also true if constrained

- Income process: $y_t = \bar{y} + \rho y_{t-1} + \varepsilon_t$, where $\mathbb{E}\varepsilon_t = 0$
- Consumption response to income shocks: $\Delta c_t = \frac{r}{1+r-\rho} \varepsilon_t$
- Special cases
 - 1. $\rho = 0$: $\Delta c_t = \frac{r}{1+r} \varepsilon_t$ credit tightening view
 - consume annuity value of transitory shocks
 - if constrained consumption responds one-to-one to transitory shocks
 - 2. $\rho = 1$: $\Delta c_t = \varepsilon_t$ permanent income view
 - consumption responds one-to-one to permanent shocks
 - also true if constrained

Measurement

- Here, low income used as proxy for being borrowing constrained
- Elasticity of consumption to aggregate income, by income group \boldsymbol{j}

$$\frac{\Delta \log \bar{c}_j}{\Delta \log \bar{y}_j}, \quad \text{where } \Delta \log \bar{y}_j = \log \bar{y}_j^{\text{peak}} - \log \bar{y}_j^{\text{trough}}$$

- \bar{c}_j and \bar{y}_j : average residualized consumption and income for group j
- $\,-\,$ elasticity calculated using two observations for average c and y

Findings – Italy

Consistent with *permanent income view* of crises

Comments – framework

- How do agents smooth consumption in response to an *aggregate* shock?
 - closed economy: aggregate shocks are not insurable
 - small open economy: can borrow from abroad
 - do agents hold foreign bonds in their portfolio?
 - or redistribution from government: what is the mechanism?

Comments – **measurement**

- Constrained households
 - tradition is to proxy constrained with low assets (liquid or net-worth)
 - why use income?
- What are assumptions on income process so that averaging across j is ok?
 - does this preclude income process that is the same for everyone?
- Why not use entire time series of c and y to compute elasticities?
 - mechanism does not rely on large negative shocks (crises, sudden-stops)

Conclusion

- Excellent paper!
 - the exercise is a service to this line of work
 - neat example on how micro data is useful for macro models of aggregates
 - all done within the confines of one of my favorite theories, the PIH