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Abstract

This paper examines forecast biases through cognitive noise, moving beyond the conven-
tional view that frictions emerge solely from using external data. By extending Sims’s (2003)
imperfect attention model to include imperfect memory, I propose a framework where cogni-
tive constraints impact both external and internal information use. This innovation reveals
horizon-dependent forecast sensitivity: short-term forecasts adjust sluggishly while long-term
forecasts may overreact. I explore the macroeconomic impact of this behavior, showing how
long-term expectations, heavily influenced by current economic conditions, heighten infla-
tion volatility. Moreover, structural estimation indicates that neglecting imperfect memory
critically underestimates the informational challenges forecasters encounter.
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Introduction

The persistent presence of bias in economic forecasts raises a fundamental question: What
limits our ability to generate unbiased predictions? Despite extensive research, including
analyses of survey forecasts and controlled experiments, a comprehensive yet tractable model
of expectations formation remains elusive. This gap poses a particular challenge for macroe-
conomic analysis, where dynamic model predictions rely heavily on assumptions about how
economic agents form expectations. An empirically grounded model of this process would
enhance our ability to evaluate the validity of macroeconomic models.

Traditionally, macroeconomic forecast biases have been attributed to information frictions
– imperfect knowledge of the economic environment. Such models posit that limitations in
accessing and processing relevant data lead to gradual updates in expectations, a pattern
consistent with some features observed in macroeconomic survey data (e.g., Coibion and
Gorodnichenko (2012, 2015)). However, this framework provides an incomplete explanation,
as forecasts often exhibit substantial overreactions to new information. This pattern chal-
lenges the predictions of models relying solely on traditional information frictions, prompting
researchers to explore additional separate mechanisms (e.g., Bordalo et al. (2020), Angeletos
et al. (2021), and Gemmi and Valchev (2023)).

In this paper, I argue that a more coherent explanation for forecast biases lies in expand-
ing the concept of information frictions to include limitations in processing both external and
internal information sources. To this end, I introduce a new model where imperfect attention
and memory hinder the seamless utilization of both types of information. This framework
introduces a new mechanism: the inability to seamlessly integrate past knowledge into new
forecasts. Consequently, prior beliefs play a diminished role in resolving economic uncer-
tainty, leading forecasters to overemphasize recent news. This model explains the pervasive
patterns in survey forecasts of macroeconomic and financial variables documented in Coibion
and Gorodnichenko (2015) and Bordalo et al. (2020).

A key prediction of the model is that forecasts may exhibit horizon-dependent sensitivities
to incoming data. For near-term projections, forecasters tend to revise slowly and in a muted
fashion, underreacting to recent information. Conversely, long-term forecasts are prone to
overreacting relative to the predictions of fully frictionless models without any informational
constraints. This prediction aligns well with biases observed in survey forecasts (e.g., Bor-
dalo et al. (2023), d’Arienzo (2020), Wang (2021), and Shiller and Thompson (2022)). The
macroeconomic implications of this finding are demonstrated through an analysis of infla-
tion dynamics. Even with a fixed inflation target, the model shows that firms’ long-term
expectations about the cost conditions shift along with the current economic environment,
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leading to more volatile inflation dynamics. This makes it harder for the central bank to
balance between stabilizing inflation and the output gap.

Finally, I present a structural estimation of the underlying information frictions. This
estimation demonstrates how such frictions contribute to the biases observed in professional
forecasts. It further suggests that conventional models likely underestimate the severity of
information frictions by assuming perfect memory. My estimates suggest the the extent
of frictions quantified by mutual information are 50 percent larger, once we account for
frictions in processing both external and internal information. Thus, accounting for memory
limitations reveals that informational constraints are more binding than previously thought.

One might wonder why even professional forecasters would grapple with information fric-
tions. After all, accessing official statistics doesn’t seem overly costly, suggesting there should
be little friction in gathering these data, nor any significant memory challenges. However,
this view overlooks the nuanced art of forecasting; forecasters track and combine a vast
amount of dynamic data sources, both traditional and nontraditional, to produce forecasts.
Some of these sources provide timely insights on emerging economic issues not yet reflected
(or perhaps never captured) in official statistics. This reality poses two key problems: first,
processing all such real-time data alongside conventional sources is cognitively demanding,
as highlighted by traditional information friction models. Second, forecasters likely rely on
memory to recall and contextualize some past information, despite the ability to access it
again. In other words, drawing upon one’s accumulated experience remains vital given the
cognitive costs of continuously processing the full universe of external data in real time.

To clarify the distinct friction sources, I distinguish between external data that forecast-
ers can access (e.g., data releases or FOMC press conferences) and internal memory that
stores accumulated knowledge from prior experience. Consistent with conventional mod-
els, I posit that forecasters face constraints in processing the full breadth of external data
flows. However, I depart from tradition by also accounting for frictions in recalling and
integrating one’s knowledge repository. Specifically, forecasts get produced not with perfect
recall but with imperfect memory; preexisting knowledge is not seamlessly integrated into
new forecasts. Rather than assuming ever-expanding, perfectly nested information sets, I
conceptualize memory as a stochastically accessed collection of past knowledge.

Given the information-processing constraint, I propose a model accommodating the flex-
ible specification of attention and memory systems. Rather than imposing an ad hoc struc-
ture, this model posits that the cognitive process adapts to prioritize the most task-relevant
information for forecasting the latent variable. Allocation of attention resources and the
strength of specific memory recall are flexible within this framework. Crucially, the model
maintains parsimony with two core parameters encapsulating the severity of information-
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processing constraints: one for attention and the other for memory. These constraints shape
the structure of attentional and memory noise, reflecting the premise of adaptive yet inher-
ently noisy information-processing mechanisms. This framework also demonstrates scalabil-
ity. Under specified assumptions, I derive optimal information processes applicable to any
linear state-space system (regardless of dimension), detailed in the appendix.

I demonstrate that forecast biases arising from cognitive noise align with the biases ob-
served in survey forecasts. Notably, the model explains deviations from full-information
rational expectations documented in Coibion and Gorodnichenko (2015) and Bordalo et
al. (2020). These studies offer contrasting perspectives on the role of information frictions
in explaining forecast biases. Coibion and Gorodnichenko (2015) analyze forecasts across
macroeconomic and financial variables, finding a pattern of underrevision in consensus fore-
casts. This supports their view that limitations in accessing and processing external data
drive forecast bias. However, Bordalo et al. (2020) challenge this conclusion, identifying
biases within individual forecasts from the same survey data that traditional information
friction models cannot explain. They find that a forecaster’s recent revisions predict their
errors; in particular, an upward revision is associated with forecasts that turn out to exceed
realizations. This pattern suggests that individual forecasters are more responsive to new
information than traditional models would predict.

My model proposes memory noise as a crucial element in reconciling these empirical
findings. While attention noise offers a compelling explanation for underrevision in consensus
forecasts (stemming from the imperfect incorporation of external data), it falls short in
addressing patterns observed at the individual level. If attention noise was the only friction,
the errors in individual forecasts should not be predictable by information that individual
forecasters ought to have, such as their own forecast revisions. This is the prediction of
traditional information friction models based on the assumption that individuals efficiently
use available information, both current and past. In comparison, memory noise directly
influences the degree to which forecasters adjust their beliefs in response to new information.
When prior knowledge becomes less reliable due to forgetfulness, it carries less weight in
resolving uncertainty about the economic state. In turn, forecasters prioritize newly acquired
information. Consequently, memory noise induces overreliance on recent information when
updating forecasts, an effect not predicted by models focusing solely on attention noise.

Importantly, the proposed framework predicts that forecast sensitivity to incoming data
varies with the forecast horizon. Specifically, near-term forecasts tend to exhibit underre-
action, while long-term forecasts are more likely to display overreaction (compared to the
benchmark free of cognitive noise). Noisy news alone generates underreaction, and noisy
memory alone generates overreaction. Given the presence of both noises, the relative dom-

3



inance of the two thus matters. When discussing the different reaction sensitivity over
forecast horizons, it is useful to clarify the benchmark Kalman gains (without any cognitive
noise). Because external information is more directly informative about the near-term state,
the benchmark gains are high. Thus, it requires larger degrees of noisy memory to push
the Kalman gains above this higher benchmark level. The opposite is true for long-term
forecasts; with smaller long-term benchmark gains, relatively smaller levels of noisy memory
are sufficient to cause overreaction. Consequently, a model with both attention and memory
noise can predict a spectrum of forecast responses, ranging from underreaction in the near
term to overreaction for longer horizons. This prediction is consistent with the findings in
Wang (2021) and d’Arienzo (2020) that forecast for longer horizon interest rates displays
more sensitivity to incoming data.

I discuss the macroeconomic implications of the proposed cognitive noise by examining
their impact on the inflation process. Using a standard New Keynesian framework, where
firms set prices according to their macroeconomic expectations, I demonstrate how alterna-
tive expectation formation mechanisms can result in inflation dynamics that are qualitatively
different. When price-setters are subject to the cognitive constraints introduced in this pa-
per, inflation stabilization becomes significantly more challenging than within conventional
information friction models. This stems from the lack of anchoring in the long-run econ-
omy. Since firms lack perfect awareness about the long-run cost conditions, their beliefs
persistently fluctuate. This additional volatility propagates through price-setting decisions,
resulting in a more volatile inflation process. Such increases in volatility challenge the central
bank’s policy trade-off between inflation and output stabilization.

Finally, I employ the proposed model to estimate the severity of cognitive constraint
present in survey forecasts. In particular, I analyze professional forecasters’ projections for
the gross domestic output measures to infer the extent of attention and memory constraints.
My estimate of the attention constraint is roughly 50 percent larger than that of Coibion and
Gorodnichenko (2015), who implicitly assumed perfect memory in their analysis of informa-
tion frictions. Why does assuming perfect memory lead to an underestimation of underlying
attention constraints? This occurs because more aggressive forecast revisions, driven by
imperfect memory, are misinterpreted as stemming from laxer attention constraints. Using
the estimated model, I demonstrate that cognitive noise alone can account for a substantial
portion of the observed variation in forecasts and forecast revisions.

My proposed model of expectations formation offers a parsimonious framework to explain
the puzzling features of survey forecasts. A single type of information friction – the finite
capacity to process vast amounts of data – prevents economic agents from generating fore-
casts consistent with full information rational expectations (FIRE). This stands in contrast
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to past literature, where non-Bayesian assumptions, in addition to information frictions, are
often invoked to explain forecast biases. For example, researchers have proposed represen-
tative heuristics (Bordalo et al. (2020)), model mis-specification (Angeletos et al. (2021)),
and incentives to stand out (Gemmi and Valchev (2023)) as an additional mechanism, as
explanations for patterns in Coibion and Gorodnichenko (2015) and Bordalo et al. (2020).
While insightful, these approaches do not provide reasons why such mechanisms should ex-
ist alongside information frictions. My model demonstrates that cognitive noise alone can
address these patterns. Importantly, it also explains why under/overreactions may depend
on the forecast horizon – a feature that previous proposals fail to capture.

This paper also contributes to the understanding of long-run expectations, a topic of
growing interest due to its role in recent inflation trends (e.g., Carvalho et al. (2023) and
Hazell et al. (2022)). My model predicts that, even with a fixed central bank inflation
target, long-run expectations will fluctuate in response to current economic environments.
This stems from memory frictions: discounting of past data hinders accurate learning of the
long-run state of the economy. While structural shifts in the economy are a valid reason to
discount past data (e.g., Crump et al. (2023) and Farmer et al. (2024)), this cannot fully
explain experimental findings that demonstrate overreaction to recent data in environments
with a known, constant mean (Afrouzi et al. (2023)). Importantly, clarifying the possible
source of bias in expectations formation has direct implications for monetary policy (for
example, see Orphanides and Williams (2006) and Gáti (2023)). If long-term expectations
fluctuate solely due to changing inflation targets, the concern for policy may be limited.
However, my model suggests that persistent policy challenges arise when bouts of inflation
can distort long-term expectations away from the clearly communicated set target.

This paper proceeds as follows. Section 1 introduces a model of expectations formation
incorporating cognitive noise. Section 2 examines how this model’s predictions align with
forecast-revision patterns observed in macroeconomic survey data. Section 3 analyzes the
model’s implications for the term structure of expectations. Section 4 demonstrates the
importance of these findings by comparing how different expectations-formation models in-
fluence the stochastic properties of inflation. Section 5 presents structural estimation results,
and Section 6 concludes.

1 Model: Cognitive Noise in Expectation Formation

This section proposes a model of how people form expectations, considering the limita-
tions of our brains in processing information. The model posits that individuals form their
expectations based on available information, but this process is subject to random errors
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or distortions due to limited attention and memory constraints. As a result, individuals’
expectations may not perfectly align with the true underlying probabilities.

1.1 The Forecasting Problem

A macroeconomic variable of interest is yt, whose stochastic process is composed of two
processes, zt and ηt, as described by the following data-generating process.

yt = zt + ηt (1.1)

where zt captures the persistent business cycle variations, and ηt is the transitory component
of yt. I further suppose that zt is described as an auto-regressive process

zt = (1− ρ)µ+ ρ zt−1 + ϵt (1.2)

where µ is the long-run mean of zt, and ρ is its serial correlation (with |ρ| < 1). The
innovation ϵt is assumed to be drawn from a Gaussian distribution N (0, σ2

ϵ ). The variations
in ηt are assumed to be drawn from a Gaussian distribution N

(
0, σ2

η

)
.

I suppose that forecasters have a correct understanding of the parameters describing the
data-generating process of yt (and those of zt and ηt). However, they do not separately ob-
serve realizations of zt and ηt. Thus, they infer the underlying economic state from available
information, which is detailed in the following segment. The task of the forecasters is to
make predictions for the probable future values of yt at each time period. The following
expected quadratic loss function captures the lifetime losses from inaccurate projections.

E

[
∞∑
t=0

βt

H∑
h=1

(yt+h − Fi,t yt+h)
2

]
(1.3)

where Fi,t yt+h denotes forecaster i’s projection of yt+h based on information available at time
t, and H is the longest horizon that forecasters make projections for. By (1.1) and (1.2), a
forecaster i’s projection of yt+h will be

Fi,t yt+h = Fi,t zt+h =
(
1− ρh

)
µ+ ρh Fi,t zt. (1.4)

Thus, these forecasts are based on one’s projections of the evolution of the hidden state zt.

1.2 The Cognitive Process

Accurate economic forecasts hinge on the decision-maker’s (DM) ability to understand the
underlying state zt. In the cognitive model I propose, the process of acquiring and processing
information is inherently imperfect; our cognitive processes introduce random noise, creating
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a gap between the true state and the DM’s understanding of it. This section outlines the
source of this “cognitive noise” and propose a mathematical framework to model its impact
on forecasting.

The cognitive constraint. I propose that DM’s forecasts are not derived directly from the
complete set of available information. Instead, they are shaped by a “mental representation”
constructed within the DM’s mind, a concept well-established in psychology and cognitive
science literature (e.g., Paivio (1990)). This representation is inherently less precise than
original data, highlighting the complexity faced by forecasters in distilling insights from
diverse information sources.

To measure the accuracy of mental representations, I follow Sims (2003) and employ
coding theory. A more accurate representation reduces uncertainty about the original in-
formation, and this reduction is quantified by the mutual information (I) between the two.
I posit that our cognitive processes have limited precision, imposing a constraint on the
achievable value of I.

Available information. Information available to forecasters can be divided into two cat-
egories. The first is observable data (such as data releases, news articles, etc) which provides
updates on the current economic state (zt). This data is assumed to be accessible to all
forecasters. The second category is internal knowledge, consisting of an individual’s un-
derstanding built from past forecasting experiences. Internal knowledge may vary between
forecasters, even when they access the same observable data, as they may have different per-
spectives. The core distinction here is whether information is external (observable data) or
internal (accumulated knowledge) to the DM’s mind. Mathematical formulation is provided
in the section.

The dual processes. I further propose a cognitive process with two distinct subsystems.
The first, which I term the attention system, focuses on external information. It regulates
the allocation of mental resources towards relevant external stimuli, aligning with the “ra-
tional inattention” literature (Sims (2003), Maćkowiak and Wiederholt (2009), Kacperczyk
et al. (2016), Miao et al. (2022), Afrouzi and Yang (2021), etc). This literature analyzes the
impact of inaccurately tracking external data on decision-making. The second subsystem,
which I term the memory system, handles internal information — encoding, storing, and
retrieving it as needed. I draw from Silveira et al. (2020) in modeling memory as a recursive
system, where information must be actively encoded to remain accessible.

While attention and memory are complex mechanisms, I propose a simplified model
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that highlights their shared role in generating mental representations. The attention system
creates a representation of external information, while the memory system represents internal
knowledge. I posit that both systems operate with limited mental resources, affecting the
accuracy of their representations. This separation draws inspiration from the fact that
attention and memory systems are often associated with distinct brain regions. Despite
functioning in parallel, these systems interact: attention guides what external information
can be encoded into memory, and memory can subsequently influence the focus the attention.
This interaction is crucial in understanding the forecast biases as I discuss in Section 2.

Specification of the representational systems. I propose to model mental represen-
tation as a linear-Gaussian filter of original information, whether external or internal. This
representation is a noisy summary where the original information undergoes a linear transfor-
mation followed by the addition of Gaussian noise (orthogonal to the original information).
Importantly, I assume the filter’s specification arises from optimal cognitive processes de-
signed to minimize expected losses from inaccurate forecasts. This implies that attention
and memory systems are jointly determined to minimize the loss function (1.3), given the
constraint that forecasts integrate information from both systems with limited accuracy.

1.2.1 Attention System: Mental Representation of External Information

Many pieces of publicly available information partially reveal the underlying state zt. Ex-
amples include historical realizations of past yt or other economic variables relevant for
predicting zt. All such information that is at least somewhat informative about the value of
zt can be stored in a large vector Nt. I further suppose that the relationship between Nt and
zt is described as follows:1

Nt = R · zt + νt (1.5)

where R is a constant vector, and νt ∼ N (0, V ) for some positive definite matrix V . Fore-
casters are assumed to be correctly aware of both the structure and contents of Nt.

I suppose that the attention system generates the mental representation of Nt in the
following form.

ni,t = Kt ·Nt + ui,t (1.6)

Here, Kt is a matrix (possibly with many fewer rows than the number of elements in Nt) and
ui,t ∼ N (O, Σut) for some positive semi-definite matrix Σut. The noise ui,t is not correlated

1. Because of the Markov nature of the data-generating process, it is the information about zt that is most
relevant to DM. One could extend this set-up to incorporate a more complicated data-generating process.
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with Nt and idiosyncratic to each forecaster. The specific forms of the matrices Kt and Σut

remain to be determined.
The degree of precision of the mental representation ni,t is measured with the Shannon

mutual information between ni,t and Nt, denoted as I (ni,t; Nt).2 More inaccurate represen-
tation is captured by lower mutual information between the two random variables. I assume
that the precision of mental representation is constrained as follows:3

I (ni,t;Nt) ≤ −1

2
log ϕn (1.7)

Here, ϕn ∈ (0, 1) parameterizes the upper bound of the mutual information that is taken as
given. One can see that a higher ϕn allows lower mutual information, thereby constraining
the accuracy of the representation.

If ϕn → 0, then forecasts are accurately based on information in Nt. In this case, Kt

is an identity matrix (whose dimension is equivalent to the number of rows in Nt) and Σut

is a zero matrix (with the same dimension as Kt). With ϕn > 0, forecasts are based on
the approximate representation of Nt, as Kt may have many fewer rows than the number of
elements in Nt and at least some of the diagonal elements of Σut are positive. When ϕn → 1,
forecasts are not based on information in Nt, since the representation is infinitely inaccurate.

1.2.2 Memory System: Mental Representation of Internal Information

Through forecasting experiences, DM accumulates knowledge about the state of the economy.
I suppose that DM’s stock of knowledge at t− 1 can be described with a vector Mi,t.

Mi,t =

mi,t−1

ni,t−1

 (1.8)

where mi,t−1 denotes the knowledge carried through t− 1 (before observing Nt−1) and ni,t−1

is the knowledge from observing the news vector Nt−1. Thus, Mi,t is the internal information
that DM can access at time t.

I suppose that the memory system represents the internal information in the following

2. This metric captures how “close” ni,t is to Nt. If I (ni,t; Nt) is close to zero, then it means knowing ni,t

is not informative about Nt. If, on the other hand, the metric is close to infinity, then information delivered
by ni,t about Nt is perfectly accurate.

3. The proposed cost function is different from what is typically assumed in the rational-inattention
literature. There, it is assumed that DM can arrange to receive a signal ni,t at time t, conditioning on all
the signals till time t− 1. That is, the cost is assumed to be proportional to I(ni,t;Nt|ni,t−1, · · · , ni,0). As
will be clear from the rest of the model, I consider an environment in which the past realized values of ni,t

are not freely available. Therefore, I assume that external information is processed independently of the
cognitive state.
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way, analogous to the way attention system represents the external information in (1.6).

mi,t = Λt ·Mi,t + ωi,t (1.9)

where Λt is a matrix that may have fewer rows than Mi,t and ωi,t is an i.i.d. sequence that
is uncorrelated with Mi,t and drawn from the Gaussian distribution N (O, Σω,t) for some
positive semi-definite matrix Σω,t. Again, the entire sequence of the two matrices Λt and
Σω,t is to be specified.

The extent of noise in the mental representation mi,t is measured with the Shannon
mutual information between mi,t and Mi,t. The lower mutual information captures a more
inaccurate representation of internal information. In parallel with (1.7), I assume that the
accuracy of the representation is constrained as follows:

I (mi,t;Mi,t) ≤ −1

2
log ϕm (1.10)

for ϕm ∈ (0, 1) taken as given. A higher ϕm means a more constrained representation. If ϕm

approaches 0, the internal information encompasses all past observations (ni,0, ni,1, · · · , ni,t−1),
in which case memory is perfectly nested (i.e., Mi,t ⊇ Mi,t−1). In contrast, when ϕm ap-
proaches 1, the mental representation of internal information solely reflects noise and offers
no predictive values for the hidden state zt.

1.3 Implications of the Linear-Gaussian Representational Systems

We have seen how external and internal information is mentally represented. For brevity,
I refer to ni,t as noisy news (i.e., an imperfect representation of external information) and
mi,t as noisy memory (i.e., an imperfect representation of internal information). I suppose
that forecasters are skilled at integrating their cognitive states. As they optimally utilize
(mi,t, ni,t), their forecasts align with principles of Bayesian efficiency. The conditional distri-
bution is derived using the usual Kalman filter formula.

The linear-Gaussian structure of ni,t and mi,t implies that DM’s beliefs about the past
and current realizations of zt take the form of a Gaussian distribution. In other words,
(z0, · · · , zt) |mi,t and (z0, · · · , zt) |mi,t, ni,t are both Gaussian.4 Since DM’s beliefs about the
past and current realizations are Gaussian, DM’s belief about future realizations is also
Gaussian. I introduce the following notations to denote DM’s beliefs about the state zτ for

4. Note that the subjective probability distribution may not align with the true underlying probabilities.
In particular, the second moment of the Gaussian distribution captures the uncertainty one perceives, which
depends on the severity of attention and memory noise.
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any τ implied by her cognitive states:

zτ |mi,t ∼ N
(
zmi,τ |t, Σ

m
z,τ |t
)

zτ |mi,t, ni,t ∼ N
(
zi,τ |t, Σz,τ |t

)
The top distribution refers to the (beginning of period t) prior belief conditioned on the
memory state at time t. The superscript m indicates that beliefs are based on memory
alone. The bottom distribution is the posterior belief after observing ni,t (and is denoted
without the superscript m).

Then, the optimal forecasts of yt+h will be

Fi,t yt+h =
(
1− ρh

)
µ+ ρh zi,t|t,

from which the mean squared error from forecasting yt+h must be E
[
ρh (zt − zi,t|t)

2
]
, whose

expectation is over the entire joint probability distribution of possible values of zt, mi,t, and
ni,t. The average losses from inaccurate forecasting are thus proportional to Σz,t|t. The loss
function (1.3) then reduces to

∞∑
t=0

βt
[
q · Σz,t|t

]
, (1.11)

where q ≡ ρ2(1−ρ2H)
1−ρ2

is a constant known to DM.

1.4 The Optimal Cognitive Process

The sequence {Kt,Σut,Λt,Σωt}∞t=0 fully describe the cognitive process of accessing and stor-
ing information over time. I propose that the representational systems are designed to
minimize the loss function defined in (1.11) subject to the information environment specified
by equations (1.6), (1.7), (1.9), and (1.10). Thus, attention and memory systems are jointly
determined. This formalization captures the essence of the optimal cognitive process, and
its key insights remain valid even for more complex state spaces introduced in Section 3.

1.4.1 Optimal Representation of Noisy News

Though noisy news can take many different forms as seen in the equation (1.6), the opti-
mal representation has a lower dimension compared to the raw external information (Nt in
equation (1.5)). Additionally, the proposition below identifies the specific information from
Nt that gets encoded in this mental representation.
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Proposition 1. ñi,t is the optimal representation of Nt such that

ñi,t = κzt · E [zt|Nt] + ũi,t (1.12)

for some positive scalar κzt ∈ [0, κ̄zt] and idiosyncratic noise ũi,t drawn from N (0, σ2
ut).

Proof. See Appendix B.

Why is the optimal ni,t is one-dimensional and has the structure in (1.12)? Intuitively,
the optimal representation of ni,t should only capture information in Nt that is useful for
predicting zt. This is because other information in Nt uses up resources but does not further
increase the forecast accuracy. Since zt|Nt follows a Gaussian distribution, such information
is summarized in the first moment.5 Therefore, ñi,t encodes E [zt|Nt], which can be denoted
as follows without loss of generality:

E [zt|Nt] = zt + ν̃t, ν̃t ∼ N
(
0, σ2

ν

)
(1.13)

Here, ν̃t is the common errors in Nt, and its variance σ2
ν is taken as given and known to

forecasters.
As one can see from (1.12), there are combinations of κzt and σ2

ut that imply the same
posterior distribution zt|mi,t, ñi,t for any given mi,t. Therefore, I impose a normalization
so that κzt alone captures the accuracy of the representation. In particular, I impose that
Cov [zt, ñi,t|mi,t] = V ar [ ñi,t|mi,t], in which case the posterior uncertainty is determined as

Σz,t|t = (1− κzt) Σ
m
z,t|t

for a given prior uncertainty Σm
z,t|t. That is, observing Nt and basing one’s forecasts on ñi,t

reduces the uncertainty about zt by a factor of 1− κzt. The normalization pins down σ2
ut as

the following function of κzt:

σ2
ut = κzt (1− κzt) Σ

m
z,t|t − κ2zt σ

2
ν (1.14)

One can then see that any κzt ∈
[
0,

Σm
z,t|t

Σm
z,t|t+σ2

ν

]
ensures that the resulting σ2

ut is non-negative.
Furthermore, the accuracy constraint as described in the equation (1.7) pins down the

optimal value of κzt. When considering the optimal structure of ni,t from equation (1.12), the
mutual information between ni,t and Nt becomes equivalent to I (ñi,t; zt + ν̃t). The value of
this mutual information is entirely determined by κzt. Since the accuracy constraint imposes
a limit on the highest achievable mutual information, it becomes clear that the optimal value

5. Note that the second moment, V ar [zt|Nt], is a fixed value determined by the underlying data-
generating process of zt and the structure of the news vector. Consequently, a decision-maker faces no
uncertainty regarding this moment.

12



for κzt is the highest possible one. Consequently, we can directly express κzt as the following
function of ϕn.

κzt =
Σm

z,t|t

Σm
z,t|t +

ϕn

1−ϕn
(V ar [zt] + σ2

ν) + σ2
ν

(1.15)

Noisier news corresponds to lower values of κzt , leading to increased uncertainty in the
posterior estimate. After sufficient learning, both the prior and posterior uncertainties,
represented by Σm

z,t|t and Σz,t|t, reach a stable positive level, independent of time. This
convergence results in a constant value for κzt as well, symbolized by κzt → κz.

1.4.2 Optimal Representation of Noisy Memory

Just like we saw with noisy news, the optimal way to represent noisy memory is not nec-
essarily by storing everything. While equation (1.9) suggests it could have any dimension,
the optimal representation is more compact compared to the raw internal information, Mi,t

in equation (1.8)). As the following proposition explains, specific information from Mi,t gets
encoded in the mental representation.

Proposition 2. m̃i,t is the optimal representation of Mi,t such that

m̃i,t = λt · E [zt|Mi,t] + ω̃i,t (1.16)

for some positive scalar λt ∈ [0, 1] and idiosyncratic noise ω̃i,t drawn from N (0, σ2
ωt).

Proof. See Appendix B.

Building on the analysis of noisy news representation, we can derive the optimal structure
for representing memories using a similar approach. Just like how the optimal noisy news
representation, ñi,t, captured information from Nt useful for predicting the realized value of
zt, the optimal representation of noisy memory captures information from Mi,t that is useful
for predicting zt. The critical information again boils down to the expected value of zt|Mi,t.
Therefore, m̃i,t essentially stores the average outcome of zt one would expect based on the
previous understanding (as represented by zi,t|t−1). This connection highlights a parallel
between how one processes information from the external world (news) and the internal
world (memories): both prioritize capturing the gist, not every detail, to make accurate
predictions about the state of the economy.

As one can see from (1.16), there are combinations of λt and σ2
ωt that imply the same

prior distribution zt| m̃i,t. Therefore, I impose a similar type of normalization assumption
as I did for noisy news so that the accuracy of the representation is captured by λt alone.
I impose the restriction that Cov [zt, m̃i,t] = V ar [m̃i,t], in which case V ar

[
zi,t|t−1

∣∣ m̃i,t

]
=

13



(1− λt)V ar
[
zi,t|t−1

]
. That is, observing m̃i,t reduces the uncertainty about zi,t|t−1 by a

factor of 1− λt. This pins down σ2
ωt as a function of λt in the following form:

σ2
ωt = λt (1− λt)V ar

[
zi,t|t−1

]
(1.17)

One can then see that any λt ∈ [0, 1] ensures that the resulting σ2
ωt is non-negative.

From the representation structure above, one can see that the forecast accuracy is de-
scribed by λt. Given the posterior uncertainty from the previous period, Σz,t|t−1, the prior
uncertainty is determined as follows:

Σm
z,t|t = Σz,t|t−1 + (1− λt)

(
V ar [zt]− Σz,t|t−1

)
Uncertainty about zt increases from Σz,t|t−1 to Σm

z,t|t because prior knowledge is imperfectly
represented when making new forecasts. In the extreme case of no-memory (λt → 1). the
prior uncertainty Σm

z,t|t converges to the “default” (or initial) uncertainty V ar [zt].
The optimal value of λt can be determined within the context of the memory system’s

accuracy constraint, formally defined in equation (1.10). This constraint effectively man-
dates a limitation on the fidelity of information retrievable from memory, which translates
to maximizing the mutual information between the mental representation (m̃i,t) and the
summarized internal information (zi,t|t−1). Consequently, the optimal value of λt becomes
the one that maximizes this mutual information while adhering to the aforementioned con-
straint. The optimal value can be directly expressed as a function of ϕm, which encapsulates
the inherent limitations of the memory system.

λt = 1− ϕm (1.18)

A direct observation can be made that noisier memory corresponds to lower values of λt and
concomitantly, higher prior uncertainty.6 Since ϕm is a constant parameter, I use λ to denote
the level of λt in the following section.

1.5 Discussion: Interpretations of information frictions

Traditional models of information frictions focus on how difficult it is to get information.
For example, the “noisy” information model assumes forecasters only have fragmented infor-
mation about the state of the economy (Woodford (2003)), while the “sticky” information
model suggests some forecasters rely on outdated data (Mankiw and Reis (2002)). However,
these explanations are less convincing for professional forecasters who typically have timely
access to readily available data.

6. The determination of memory system is more complicated in the general case introduced in Section 3,
but the intuition remains valid.
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This paper proposes a different perspective: information processing constraints. That is,
limitations exist in understanding the implications of the available information, not neces-
sarily obtaining it. Forecasters are aware of current events, like labor strikes or the recent
interest rate decisions by the central bank, but struggle to predict their exact impact on fu-
ture inflation. This processing constraint leads to differing interpretations of the same data,
even among professionals with equal access to information sources. The proposed model
expands on Sims (2003) by applying the processing constraint to all information, not just
observable data. In my proposal, relying on internal knowledge incurs a mental cost, similar
to the cost of using external information. This results in an attention and memory system
that is inherently inaccurate. In comparison, Sims (2003) assumes that the knowledge from
observable data can be re-accessed with accuracy in the future.

2 Model Predictions about Forecast Biases

This section investigates the influence of cognitive noise on the forecasts of the hidden state
zt. The analysis reveals that cognitive noise systematically biases these forecasts, leading to
patterns consistent with biases observed in professional forecasts of diverse macroeconomic
and financial variables. I also propose an estimation strategy that leverages survey forecasts
to quantify the extent of cognitive constraints.

2.1 Forecasts Subject to Cognitive Noise

According to the proposed framework, internal information is represented as described by
equation (1.16). This equation informs how the DM’s time-t prior belief about zt will deviate
from the perfect-memory scenario (zmi,t|t = zi,t|t−1). Specifically, the prior beliefs takes the
form:

zmi,t|t = (1− λ)E [zt] + λ zi,t|t−1 + ω̃i,t (2.1)

Here, λ captures the inaccuracy of the memory system, while ω̃i,t is the variability associated
with memory noise, as defined in equations (1.18) and (1.17). The key takeaway is that
when memory is imprecise (λ < 1), forecasts show sluggishness in incorporating one’s past
knowledge. This arises because the processing of internal information introduces noise,
causing the remembered knowledge about zt to be biased towards a default prior (E [zt]).

Similarly, imprecise attention affects the evolution of the posterior belief. When external
information arrives and mentally represented according to equation (1.12), the DM’s prior
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belief updates to the following posterior belief:

zi,t|t = (1− κz) z
m
i,t|t + κz zt + κz ν̃t + ũi,t (2.2)

where κz controls the weight given to new information, ν̃t captures the “common noise” in the
external information, and ũi,t is the individual idiosyncratic attention noise. This equation
reveals a different type of sluggishness compared to imperfect memory discussed earlier. Due
to processing constraints, forecasts tend to put less weight on new information (κz ≪ 1) and
more on one’s prior beliefs. This results in sluggish updates, meaning forecasts are slow to
catch up with recent developments in zt.

Equations (2.1) and (2.2) jointly describe the evolution of the DM’s beliefs about zt.
These equations capture how cognitive noise manifests in the belief formation process.

zi,t|t = (1− λ) (1− κ)E [zt] + λ (1− κz) zi,t|t−1 + κz zt + κz ν̃t + (1− κz) ω̃i,t + κz ũi,t (2.3)

This equation summarizes the key features of forecasts under the influence of cognitive noise.
Notably, limitations in processing external information, captured by the value of κz lower
than the perfect-attention scenario, impede the timely incorporation of changes in zt, leading
to sluggish recognition of new developments and delayed adaptation of forecasts. Further-
more, memory constraints, represented by the value of λ lower than unity, hinder DM’s
ability to swiftly integrate past knowledge, resulting in sluggish updates of forecasts based
on historical experience. Finally, individual variations in processing information (reflected
in ω̃i,t and ũi,t) generate forecast dispersion. This implies that even with access to the same
sources of external information, individuals arrive at different predictions.

The effect of noisy memory. It is helpful to discuss how the noisy-memory assumption
changes the predictions of the traditional information friction models. If memory is perfect,
then beliefs about zt evolve according to the following formula:

zi,t|t = (1− κ∗z) zi,t|t−1 + κ∗z zt + κ∗z ν̃t ++κ∗z ũi,t (2.4)

where κ∗z is the limit of the Kalman gains such models. Comparing this law of motion to the
equation (2.3) in the noisy memory case, three key changes stand out. With noisy memory,
less weight is given to prior knowledge due to the term λ < 1. This implies that past
information has a reduced influence on current beliefs. Second, the weight accorded to new
information, represented by κz, is larger than κ∗z in equation (2.4). This indicates that with
noisy memory, individuals place more emphasis on newly received information. Finally, a
new source of cognitive noise emerges in the form of ω̃i,t in equation (2.3). This additional
noise further disrupts the accuracy of forecasts.
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Figure 1 illustrates the effects of noisy memory when learning about zt. I use the pa-
rameter values ρ = 0.8 and σ2

ϵ = 1.0 for the data-generating process, and σ2
ν = 0.2× σ2

z for
this numerical exercise. The top panel depicts how the extent of noisy news (ϕn) and noisy
memory (ϕm) affect the level of Kalman gain. I categorize the pairs of noise parameters as
either “overreaction” or “underreaction”, depending on whether the resulting Kalman gain is
greater or smaller than the benchmark case of (ϕn = 0, ϕm = 0). As conventional models of
information frictions suggest, the Kalman gain is lower than the benchmark when the only
cognitive noise is the noisy news. On the other hand, the opposite is true when only noisy
memory is present. When both noises are present, a spectrum of under- to overreaction
exists. The relative strength of overreaction (driven by noisy memory) and underreaction
(driven by noisy news) determines the size of the Kalman gain. For a given level of noisy
memory, we observe underreaction for a sufficiently small level of ϕm, but a larger ϕm can
flip it overreaction.7

The bottom panel shows the impulse response to innovation in zt. The grey dotted
line shows the response of zt itself. Other lines show the response of forecasts of zt for
varying degrees of cognitive noise. The black solid line is the benchmark case without any
cognitive noise. The forecasts lag the actual zt because even an efficient use of external
information does not accurately reveal the hidden state. The blue dashed line describes the
forecasts when only noisy news is present. This line initially undershoots the benchmark but
catches up with enough learning opportunities. In comparison, the orange dashed-dotted
line shows the case when both noises are present, in particular when no prior knowledge is
recalled at all. The parameter values chosen for this line correspond to the “overreaction”
region in the above figure. Due to the high prior uncertainty resulting from no memory, the
initial response is more significant than the benchmark. Such high level of uncertainty arises
because accumulation of knowledge is slow (in this case, zero). Since DM cannot tap into
prior knowledge, DM’s knowledge about zt does not improve over time learning about zt,
even with the large Kalman gain.

2.2 Biases in Survey Forecasts

This section dives into two regression tests designed to probe the potential deviations of
survey forecasts from the predictions of the Full-Information Rational Expectations (FIRE)
hypothesis. By analyzing these deviations, I aim to shed light on the possible presence and

7. One factor that crucially determines the exact size of each region is σ2
ν , the prevalence of the noise

in external information, as it determines the no-noise benchmark Kalman gain. If the external information
completely reveals the hidden state, then the benchmark Kalman gain is one; in this extreme case, any
predicted size of gains subject to cognitive noise points to underreaction.
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Figure 1: The effects of noisy memory
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The figures describe the effects of noisy memory. The top panel categorizes pairs of noisy news (ϕn) and
noisy memory (ϕm) as “overreaction” or “underreaction” regions, depending on whether the resulting
Kalman gains are greater or smaller than the benchmark free of cognitive noise. The bottom panel
depicts the impulse response of forecasts to an innovation in zt. The grey dotted line is the response
of zt. The black solid line shows the case of perfect news and memory. Colored lines assume a varying
degree of cognitive noise. The data-generating process is described by ρ = 0.8 and σ2

ϵ = 1.0, and the
extent of noise in external information is quantified as σ2

ν = 0.2× V ar [zt].
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influence of cognitive noise in forecasting behavior.
Before delving into the analysis of survey forecasts, it is useful to establish the three

fundamental assumptions that underpin the FIRE hypothesis. We can view these assump-
tions through the lens of the model established in Section 1. First, the Bayesian efficiency
assumption states that agents optimally utilize all available information.8 Within the pro-
posed model, this implies that agents update their beliefs in a statistically optimal manner,
incorporating all relevant information. In simpler terms, agents constantly minimize errors
in their predictions. Second, the perfect memory assumption demands that agents have
flawless recollection of all past information. In the context of the proposed model, it signi-
fies that agents can effortlessly recall and leverage past knowledge with complete accuracy
when forming new beliefs. This allows them to draw upon their entire history of learning
and experiences. Finally, the perfect attention assumption posits that agents can process
all available external sources of information needed for optimal belief updating. Within the
proposed model, this translates to every agent having access to the same perfect external
information when making predictions.

The three core assumptions of FIRE - Bayesian efficiency, perfect memory, and perfect
attention - pave the way for a series of increasingly restrictive regression tests. Each test
unveils another layer of potential deviations from FIRE. To start with, the Bayesian efficiency
assumption implies that individual forecast errors cannot be systematically predicted by any
information readily available to the forecaster. This assumption can be tested by regressing
forecast errors on the element of the information set.

Building upon this first test, perfect memory assumption introduces the additional con-
straint that past forecast revisions should not be predictive of future errors. Since these
revisions are part of the forecaster’s information set, they should not yield any insights
into future mistakes if perfect memory holds true. Testing this assumption can be done by
estimating the following regression.

yt+h − Fi,t yt+h = αI + βI (Fi,t yt+h − Fi,t−1 yt+h) + ei,t+h|t, (2.5)

where Fi,t yt+h and Fi,t−1 yt+h is forecaster i’s predictions of yt+h at time t and t− 1, respec-
tively. The test assesses the combined influence of Bayesian efficiency and perfect memory.

Finally, perfect attention implies that errors in average forecasts (across multiple individ-
uals) would not be predictable by recent revisions in the average forecasts. This is because,
under perfect attention, all relevant information is incorporated into all individuals’ fore-
casts, and thus into the average forecasts. This idea is captured by the regression test of the

8. Agents are assumed to possess accurate knowledge of the economic environment, as was the case in the
model in section 1.
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following form.

yt+h − Ft yt+h = αC + βC (Ft yt+h − Ft−1 yt+h) + et+h|t, (2.6)

where Ft yt+h and Ft−1 yt+h are the average predictions at time t and t−1 among all forecast-
ers. This test probes the combined influence of all three assumptions at the aggregate level.
Scrutinizing survey forecasts through these progressively stricter tests help unveil layers of
possible deviations from FIRE.

Crucially, these two regression tests hold particular significance in the expectation for-
mation literature. They offer a structured methodology to assess whether the concept of
information frictions can explain the observed biases in survey forecasts. Coibion and Gorod-
nichenko (2015) argue that a violation of test (2.6) aligns with the popular models of infor-
mation frictions. Conversely, Bordalo et al. (2020) posit that a violation of test (2.5) cannot
be explained by information frictions; instead, the authors argue that it further requires
a relaxation of Bayesian efficiency. I discuss these arguments in detail and offer different
interpretations of the regression coefficients based on the model proposed in this paper.

Interpretations of βC. Coibion and Gorodnichenko (2015) analyze the relationship be-
tween forecast errors and revisions of the average forecasts, finding a positive and statistically
significant coefficient (βC) for various macroeconomic variables. They attribute this finding
to the relaxation of the full-information assumption, arguing that information frictions can
lead to sluggish forecast revisions. Intuitively, when individuals lack complete information,
their forecasts may incorporate unrelated noise or outdated data. This can create inertia
in aggregate forecast revisions, when new economic changes emerge. Consequently, forecast
errors, defined as in the dependent variable in test (2.6), become positively correlated with
revisions, as sluggish adjustments lead to persistent deviations from the true realizations.

The authors contend that the magnitude of βC reflects the severity of information fric-
tions. In their framework, a larger βC could stem from either a higher noise level in the
information signal (from the noisy information model) or a longer information lag (from the
sticky information model). This implies that agents with more severe frictions experience
greater difficulty in extracting or incorporating new information in their forecasts, leading
to a stronger positive association between forecast errors and revisions.

The cognitive-noise expectation model introduced in section 1 offers a novel interpretation
of the regression coefficient βC . Notably, the analysis departs from prevalent models of
information frictions that often implicitly assume perfect recall of past knowledge. The
following proposition provides a detailed examination of how imperfect memory shapes the
regression coefficient and influences its interpretation.
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Proposition 3. For forecasts subject to cognitive noise, the asymptotic limit of βC is

βC =
1− κz
κz

{
1 + (1− λ)

λ (1− κz) ρ
2

1− λ (1− κz) ρ2

}
if σ2

ν → 0. Furthermore, βC has the following properties:

1. βC > 0 if ϕn > 0, and βC = 0 if ϕn → 0.

2. ∂βC

∂ϕn
> 0, and ∂βC

∂ϕm
< 0 if ϕn ≤ ϕ̄n ≡ ḡ (ρ, σ2

ϵ ).

Proof. See Appendix C.

Noisy news and noisy memory jointly influence the Kalman gain (κz), impacting the
dynamics of forecast revision captured by βC . The first part of the proposition confirms
that findings in Coibion and Gorodnichenko (2015) still hold true when the perfect-memory
assumption is relaxed: Due to imperfect awareness of the true state caused by noisy news,
forecasters update their beliefs sluggishly, leading to a positive βC . Furthermore, noisier
news reduces κz and increases βC .

However, this model offers a novel insight: the combined effect of noisy news and noisy
memory on βC . Noisy memory implies less accurate prior knowledge, leading to higher
uncertainty about the state. Consequently, forecasters rely more heavily on incoming data,
reflected in a higher κz. This results in a lower βC .

Interpretations of βI. Bordalo et al. (2020) empirically challenge the findings of Coibion
and Gorodnichenko (2015) by observing a a negative βI across numerous macroeconomic and
financial variables. This result contradicts theoretical predictions of a purely information-
based frictions; regardless of the extent of information frictions, βI should be zero, as long
as forecast revisions are incorporated within the forecaster’s information set. Thus, Bordalo
et al. (2020) contend that information frictions cannot solely explain the observed forecast
bias and suggest the need to relax the assumption of Bayesian efficiency. To accommodate
this finding, the authors propose a non-Bayesian model termed “diagnostic expectations.”
Within this framework, forecasters overweight recent observations, leading to excessive fore-
cast revisions. The authors posit that a more negative βI signals a great departure from
Bayesian efficiency.

In contrast, I have proposed a framework that relaxes the assumption of perfect memory
while maintaining Bayesian efficiency. This model offers an alternative interpretation of the
regression coefficient, as outlined in the following proposition.
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Proposition 4. For forecasts subject to cognitive noise, the asymptotic limit of βI is

βI = − (1− λ) (1− κz)

2 (1− λ) (1− κz) + ρ−2 − 1

if ρ > 0. Furthermore, βI has the following properties.

1. βI < 0 if ϕm > 0, and βI = 0 if ϕm → 0.

2. ∂βI

∂ϕn
< 0, and ∂βI

∂ϕm
< 0.

Proof. See Appendix C.

This proposition demonstrates that imperfect memory, even within the bounds of Bayesian
efficiency, can generate a negative βI . The regression coefficient, within my framework, re-
flects an inherent bias due to the under-utilization of one’s past knowledge.

Importantly, the degree which forecasters leverage past knowledge is directly influenced
by the interplay of noisy news and noisy memory. Noisy memory leads to the discounting of
prior knowledge, manifesting in a negative βI . This results from the imperfect recall of past
knowledge. The effect is exacerbated when processing external news becomes more difficult.
In this scenario, forecasters lean more heavily to their imprecise memory as a foundation for
their judgments. With external information less able to correct memory-driven biases, βI
becomes increasingly negative.

Identifying the extent of cognitive constraints. Propositions 1 and 2 demonstrate
that the two regression coefficients allow us to quantify the severity of noisy news and noisy
memory.

Lemma 1. Given levels of βC and βI identify a unique pair of ϕn and ϕm, if it exists.

Proof. See Appendix C.

This lemma establishes a one-to-one mapping between the regression coefficients (βC , βI)
and the underlying parameters (ϕn, ϕm). The key idea is to construct isocurves: sets of ϕn

and ϕm that are consistent with a given coefficient value. This illustrates the influence of
both noisy news and noisy memory in shaping the forecast biases captured by βC and βI .
I demonstrate that the isocurve of βC exhibits a positive slope, while the isocurve of βI
exhibits a negative slope. Thus, if they intersect, they do so at a single point.

Figure 2 illustrates this point using the parameters of ρ = 0.8, σ2
ϵ = 1.0, and σ2

ν =

0.2σ2
z . The isocurve for βC = 0.5 (solid blue) slopes upward, indicating that increased

belief sensitivity due to noisier memory can be offset by slower updates due to noisier news.
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Figure 2: βC and βI jointly identify the extent of cognitive noise
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This figure shows the isocurves for the two regression coefficients in (2.6) and (2.5). The blue solid line
displays the pairs of noisy-news constraint ϕn and noisy-memory constraint ϕm that generate βC = 0.5.
The orange dashed line displays such pairs that generate βI = −0.2. The point at which the two lines
cross is the estimated extent of noisy news and noisy memory, which is ϕ∗

n = 0.35 and ϕ∗
m = 0.35.

The data-generating process is described by ρ = 0.8 and σ2
ϵ = 1, and the extent of noise in external

information is quantified as σ2
ν = 0.2× σ2

z .

The isocurve for βI = −0.2 (dashed orange) slopes downward, showing that greater under-
utilization of past knowledge (due to noisier memory) can be offset by less reliance on memory
when news is easier to process. Their interaction uniquely identifies the extent of noisy news
and noisy memory that align with the observed regression coefficients as ϕ∗

n = 0.35 and
ϕ∗
m = 0.35.

3 Model Implications: Term-Structure of Expectations

The proposed model of noisy mental representation has a new implication about the term-
structure of expectations. I extend the model introduced in 1 to reflect that forecasters
face uncertainty about the long run. The predictions are consistent with several pieces of
empirical evidence.
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3.1 Learning about the Long Run

I consider the possibility that forecasters face uncertainty about the very long run. In this
section, I suppose that the data-generating process of zt is described as

zt − µt = ρ (zt−1 − µt−1) + ϵt (3.1)

µt = (1− ρµ)µ+ ρµ µt−1 + ϵµ,t. (3.2)

Compared to section 1, the exogenous state zt fluctuates around the mean that also has
stochastic components. Given the nature of external information, as specified in equation
(1.5), DM thus has imperfect awareness of the actual realizations of both zt and µt. In other
words, the state variable relevant for predicting future realizations is expanded from zt to
(µt, zt), as forecasts for yt+h depend on DM’s beliefs about µ and zt. I denote this state
vector as

xt =

zt
µt

 .

I suppose that the information environments are assumed to be the same as in Section
1. That is, forecasters have access to a commonly available news source (1.5), which is
mentally represented in their mind as described in (1.6). Each forecaster also taps into one’s
internal information (1.8), which has mental representation of the form (1.9). Any such
representational system implies that forecasters’ beliefs about the state vector xτ for any τ
are described as Gaussian distributions. I use the following notations to describe them.

xτ |mi,t ∼ N
(
xmi,τ |t, Σ

m
τ |t
)

xτ |mi,t, ni,t ∼ N
(
xi,τ |t, Στ |t

)
As was the case in Section 1, the first moment will depend on the history of realized cognitive
noise and thus is denoted with a subscript i. The second moment evolves as a deterministic
function of time, i.e. the length of the learning experiences.

The exact specification of the representational system is assumed to be the optimal one
minimizing the objective function (1.3), which reduces to

∞∑
t=0

βt trace
(
Σt|tQ

)
, (3.3)

where Q is a matrix defined as Q ≡
∑H

h=1 αh α
′
h and αh = (1 − ρh ρh)′. As outlined

in Section 1, not all representational systems described in equations (1.6) and (1.9) are
feasible. They are subject to the constraints that the mental representation of both external
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and internal information has limited accuracy, as described in equations (1.7) and (1.10).

3.2 The Optimal Cognitive Process

I discuss the kind of information optimally encoded in the representational system. Unsur-
prisingly, the intuition carries over from Section 1 that some information does not improve
the forecast accuracy while using up the mental resources, which therefore will not be part
of the mental representation. As I derived in Appendix A, the optimal structure of noisy
news and noisy memory takes the following analogous forms.

ñi,t = K̃t · E [xt|Nt] + ũi,t, ũi,t ∼ N (O, Σut) (3.4)

m̃i,t = Λ̃t · E [xt|Mi,t] + ω̃i,t, ω̃i,t ∼ N (O, Σωt) (3.5)

where both ũi,t and ω̃i,t are idiosyncratic random errors uncorrelated with E [xt|Nt] and
E [xt|Mi,t], respectively. The sequence of matrices K̃t, Σut, Λ̃t, and Σωt for all t remain to be
specified. The key message is that it is only the information about the state vector xt stored
in each information source that matters for minimizing the expected losses from not making
accurate forecasting. This is a direct extension of the findings in the optimal representational
systems, described in equations (1.12) and (1.16), when the only state variable is zt.

Given this structure of the representational system, forecasters’ beliefs are derived to
evolve as follows. The beginning-of-period prior (based on noisy memory) evolves from the
previous period’s posterior distribution according to

xmi,t|t = xi,t|t−1 +
(
I − Λ̃t

) (
E [xt]− xi,t|t−1

)
+ ω̃i,t (3.6)

Σm
t|t = Σt|t−1 +

(
I − Λ̃t

) (
V ar [xt]− Σt|t−1

)
(3.7)

And the posterior belief (that is also based on noisy news) is described as

xi,t|t =
(
I − K̃t

)
xmi,t|t + K̃t xt + ν̃t + ũi,t (3.8)

Σt|t =
(
I − K̃t

)
Σm

t|t (3.9)

where ν̃t is common across forecasters and drawn from the distribution, ν̃t ∼ N (O, Σν).
Again, this term exists because the news vector does not completely reveal the realized value
of the hidden state, as described in equation (1.5). Below I discuss how the optimal sequence
of
{
K̃t,Σut, Λ̃t,Σωt

}∞

t=0
is derived.

Specifying K̃t. As analyzed in section 3, the optimal representation is one-dimensional
when forecasters are mainly uncertain about the current hidden state zt (that is, they do
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not face additional uncertainty about the long run). In this case, the two scalars, κzt and
σ2
ut, fully describe the structure of the attention system, and their values are derived in

equations (1.14) and (1.15). This system is closely related to the representational system
optimal for the expanded state space. This is because the external information described
in (1.5) is informative about the long-run µt only through its association with zt. In other
words, information in Nt about the additional state variable µt is subsumed in E [zt|Nt].
Specifically, the following expressions show how the matrices K̃t and Σut in equation (3.4)
are spanned from κzt and σ2

ut.

K̃t = κzt ·
Σm

t|t e2 e
′
2

e′1Σ
m
t|t e2

(3.10)

Σut = σ2
ut ·

1(
e′1Σ

m
t|t e2

)2 (Σm
t|t e2)(Σ

m
t|t e2)

′ (3.11)

where the vectors e1 and e2 are defined as e1 ≡ (1 0)′ and e2 = (0 1)′.

Specifying Λ̃t. Deriving the optimal memory system under an expanded state space in-
troduces two key challenges. Firstly, the dimension of information to be retained over time
increases. This necessitates a forward-looking optimization approach that explicitly consid-
ers the potential availability of external information sources in future periods. Secondly, and
from a technical standpoint, the loss function exhibits a non-convexity with respect to the
choice variables – the sequence of matrices defining the memory system across all periods.
Consequently, deriving the optimal solution requires global optimization methods. To isolate
the trade-off stemming from the first challenge, I consider the myopic case (β → 0). This
simplification enables the analytical derivation of the optimal Λ̃t in equation (3.5).

A crucial step in this derivation is defining a matrix Γt, which captures how the memory
system differentially weights information components. This matrix is defined as follows:

Γt =
(
I − K̃t

)′
Q
(
I − K̃t

)
(3.12)

Note that Γt is a function of Λ̃t since K̃t itself is a function of Λ̃t (through its influence on
Σm

t|t). The structure of Γt reflects the relative importance assigned to different information
components. This interpretation is driven by two key factors. First, large elements within
the matrix (I − K̃t) indicate that external information sources offer limited resolution of
uncertainty about the state. In such scenarios, the representational system places a higher
premium on accurate memory to guide its forecasts. Second, the loss function matrix Q

quantifies the cost of forecasting errors across different dimensions. The memory system
prioritizes retaining and utilization information where such errors are most costly.
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The derivation of optimal Λ̃t clarifies the principles by which the memory system prior-
itizes information and may strategically reduce its representational complexity. This com-
plexity is directly reflected in the rank of the matrix Λ̃t as I discuss below. While I focus on
the essential insights, see Appendix A for a full derivation. The optimal configuration of Λ̃t

depends crucially on the matrix Γt, defined in equation (3.12). To analyze its structure, I
employ eigen-decomposition:

V ar
[
xi,t|t−1

] 1
2 Γt V ar

[
xi,t|t−1

] 1
2 = UtGt U

′
t

where Ut is an orthonormal matrix storing eigenvectors, and Gt is a diagonal matrix storing
eigenvalues in descending order (that is, g1,t > g2,t). This process extracts and ranks the key
informational components embedded within Γt. The eigenvector corresponding to the higher
eigenvalue captures the variation in V ar

[
xi,t|t−1

] 1
2 Γt V ar

[
xi,t|t−1

] 1
2 that is more significant

in minimizing the loss function (3.3). The optimal Λ̃t is then derived as follows:

Λ̃t = V ar
[
xi,t|t−1

] 1
2 UtDt U

′
t V ar

[
xi,t|−1t

]− 1
2 ,

where Dt is a diagonal matrix, whose elements emerge from the analysis of Γt. Specifically,
it takes the following form:

Dt =



(
1− ϕm 0

0 0

)
if ϕm ≥ g2,t

g1,t1−
(

g2,t
g1,t
ϕm

) 1
2

0

0 1−
(

g1,t
g2,t
ϕm

) 1
2

 otherwise.

This derivation clarifies the process by which the rank and the content of the matrix Λ̃t

is determined. We observe two potential cases: the first is when the memory system stores
only some dimensions of the information within xi,t|t−1, thus reducing its overall rank. Here,
the first diagonal element in Dt receives the maximal possible weight permitted by the
memory constraint, while the second element is zero. This happens when the extent of
memory constraint, ϕm, exceeds the ratio of eigenvalues, g2,t/g1,t. Intuitively, if much of
the variation in V ar

[
xi,t|t−1

] 1
2 Γt V ar

[
xi,t|t−1

] 1
2 is explained by the first component of the

eigen-decomposition, then g1,t is exceedingly larger than g2,t (for a given ϕm). In this case,
putting the maximal weight on the first component is optimal in minimizing the loss function.
The second case arises when the rank of the remembered knowledge remains unchanged
from that of xi,t|t−1 (that is, the optimal memory state m̃i,t is two-dimensional). In this
instance, the first diagonal element inDt is larger than the second, implying that the variation
corresponding to g2,t is assigned a smaller, but non-zero, weight by the memory system. In
both cases, it is straightforward to verify that det

(
I − Λ̃t

)
= ϕm, confirming that the
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memory constraint outlined in equation (1.10) is respected.
The principles in which Λ̃t is determined are similar to the core idea of the Principal

Component Analysis in how factors are formulated and which ones are prioritized. The
crucial difference in the exact determination of the factors lies in the role of memory system:
it complements the external information available to DM in minimizing the future forecast
errors.

3.3 Horizon-dependent Forecast Sensitivity

The joint consideration of both types of cognitive noises predicts that forecast sensitivity to
news depends on the forecast horizon. I discuss this prediction in the context of the predicted
values of Kalman gains when updating beliefs about the near-term and the long-term. Figure
3 again categorizes the pairs of cognitive noises as overreaction if the resulting Kalman
gains are larger than the no-cognitive-noise benchmark, and underreaction otherwise. The
parameters used to create the figures are: ρ = 0.8, σ2

ϵ = 1.0, ρµ = 0.95, and σ2
µ = 0.5 for

the data-generating process, and the extent of noise in external information is quantified as
σ2
ν = 0.2 × V ar[zt − µt]. The left panel illustrates the gains when updating the near-term

forecasts. As discussed in section 2.1, underreaction is dominant for near-term. overreaction
is possible, but only when the extent of noisy news is sufficiently modest. In comparison,
the region of overreaction is larger for long-term forecasts. This has to do with the relative
magnitudes of the benchmark Kalman gain values.

Given the trade-off between noisy news and noisy memory, the relative dominance of
the two depends on the benchmark Kalman gains (without any cognitive noise). For near-
term forecasts, the benchmark Kalman gains tend to be larger because external information
is more directly relevant and informative about the near-term state of the variable being
forecast. Since the benchmark near-term gains are larger to begin with, it requires larger
degrees of noisy memory to push the Kalman gains above this higher benchmark level and
into the overreaction region. In contrast, for long-term forecasts, the benchmark Kalman
gain values are smaller because the external information is less directly informative about
the more distant long-term state. With these smaller long-term benchmark gains, relatively
smaller levels of noisy memory are sufficient to cause overreaction by pushing the gains
above the benchmark. Therefore, it is likely that we observe underreaction from near-term
forecasts and overreaction from long-term forecasts.
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Figure 3: Kalman gains and forecast horizons
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(a) When updating near-term forecasts
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The figures categorize pairs of noisy news (ϕn) and noisy memory (ϕm) as “overreaction” or “un-
derreaction” regions, depending on whether the resulting Kalman gains are greater or smaller than
the benchmark free of cognitive noise. The left panel illustrates the case for near-term forecasts,
and the right panel is for long-term forecasts. The data-generating process is described by ρ = 0.8,
σ2
ϵ = 1.0, ρµ = 0.95, and σ2

µ = 0.5, and the extent of noise in external information is quantified as
σ2
ν = 0.2× V ar[zt − µt].

Inspecting the Mechanism

To further clarify the intuition, I consider the case where the uncertainty about the long-run
originates not from the stochasticity, but from the parameter uncertainty. That is, the long-
run trend of the exogenous state zt is constant (µt = µ), and forecasters are uncertain about
the exact level of µ. Suppose forecasters are correctly aware that the long-run is constant
and learn about it, given the following Gaussian prior about µ

µ ∼ N (µ̄, Ω) . (3.13)

When DM can access her internal information perfectly, she has complete access to all the
past noisy news. In this case, the subjective uncertainty about the mean is

V ar [µ|ni,t, ni,t−1, · · · , ni,0] =
(
Ω−1 + t× c

)−1
,

where c is a constant determined by the information environment. We can see that the
precision of knowledge linearly increases in time, and the uncertainty eventually converges
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to zero after a long learning period.9

However, even when forecasters observe reasonably long data series, it is not guaranteed
that they eventually face zero uncertainty about µ. As discussed in Silveira et al. (2020),
forecasters fail to ever reach complete awareness of the model parameter when they have
imperfect access to their prior knowledge due to memory frictions.10 With noisy memory,
DM imperfectly accesses internal information, and V ar [µ|mi,t, ni,t] does not converge to
zero even after a long learning period. Intuitively, it is harder to accumulate knowledge
when forgetful.

Why does it matter that DM is imperfectly aware of the long-run mean? It matters
because DM will continuously update her beliefs about the mean as new data come, although
she correctly understands that the mean is a constant parameter. When zt is high, the DM
partly attributes it to higher-than-expected µ and expects future zt to be persistently high.11

Impulse response function. Figure 4 illustrates the effect of learning about the long
run. I use the same data-generating process as Figure 1 and set the cognitive parameters
as ϕn = 0.2, ϕm = 0.2, and Ω = 0.5 × V ar [zt]. The top panel shows the impulse response
to innovation in zt. The black dashed line is the response of zt. The blue line shows how
forecasts for zt evolve in response to the innovation. As was the case when only learning
about zt, learning about zt is still sluggish because of noisy news. The orange line shows the
forecast for µ. As discussed earlier, DM perceives that zt is high partly because the long-run
mean is high and revises her belief about µ upward.

The bottom panel of Figure 4 displays the response of four-quarter-ahead forecasts for
varying degrees of Ω. I realign the lines to compare forecasts to the realized zt+4 so that it is
easier to see whether forecasts undershoot or overshoot compared to the black dashed line.
We see initial undershooting for all values of Ω because of noisy news. However, forecasts
start overshooting after a few periods for some Ω. When Ω is high, DM revises her beliefs
about the long-run mean too much, which offsets the undershooting due to noisy news.
In this case, the forecast errors, defined as zt+4 − zi,t+4|t, are initially positive in response
to innovation in zt but soon turn negative. This prediction is consistent with findings in

9. This relatively fast speed of learning motivates the assumption that economic agents are perfectly
aware of the parameters describing the model environment. However, this assumption is not innocuous
when learning takes a long time. This will be the case when there are simply not enough observations to be
made to have the clarity about the parameters, say because disasters happen only so often (Collin-Dufresne
et al. (2016)) or because the long-run trend has a complicated data-generating process unknown to forecasters
(Farmer et al. (2024)).

10. Similar intuition follows from the work of Nagel and Xu (2022).
11. This prediction is similar to the extrapolative expectation models in the finance literature. Silveira

et al. (2020) argues that limited memory might be the reason such extrapolation occurs.
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Angeletos et al. (2021).12

Error-revision regression. The perpetual uncertainty about the long run also implies
that the regression coefficients in the forecast error-revision test (2.6) and (2.5) will not
be constant for different forecast horizons. To see why, consider the regression coefficient
applied to forecasts for µ. Denoting the mean forecasts as µ̂i,t ≡ E [µ|mi,t, ni,t] and the
average forecasts as µ̂t ≡

∫
µ̂i,td i, we can see that

βµ
C =

Cov [µ− µ̂t, µ̂t − µ̂t−1|µ]
V ar [ µ̂t − µ̂t−1|µ]

= −1

2

βµ
I =

Cov [µ− µ̂i,t, µ̂i,t − µ̂i,t−1|µ]
V ar [ µ̂i,t − µ̂i,t−1|µ]

= −1

2
.

The derivation is straightforward: one can observe that βµ
C must equal − V ar[ µ̂t|µ]−Cov[ µ̂t,µ̂t−1|µ]

2(V ar[ µ̂t|µ]−Cov[ µ̂t,µ̂t−1|µ]) =

−1
2
. The same reasoning applies to deriving the value of βI .13 Forecasters revise their views

about µ although µ is a fixed parameter.
Figure 5 illustrates the model predictions for βC and βI for varying forecast horizons.

I fix the degree of noisy news and noisy memory at levels in Figure 2 that generate the
targeted βC and βI . All other model parameters follow the top panel of Figure 4. The figure
shows that both coefficients become more negative for longer forecast horizons. As shown
earlier, for forecasts far enough ahead, βµ

C and βµ
I are close to −1

2
. This pattern is in line

with d’Arienzo (2020) and Wang (2021) that analyze professional forecasters’ projections
of interest rates. Both authors find that longer-horizon forecasts feature more negative
biases when the regressions (2.6) and (2.5) are estimated. Bordalo et al. (2019) and Bordalo
et al. (2023) find a similar pattern for stock analysts’ forecasts for companies’ long-term
earnings.

12. The authors analyze the professional forecasters’ year-ahead forecasts for unemployment and inflation
and their impulse response to a specific shock series constructed by Angeletos et al. (2020).

13. Derivations for other horizons are in Appendix E.
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Figure 4: Impulse-response functions when learning about the long run
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The figures show the impulse response to an innovation in yt. The extent of cognitive noise is set as
ϕn = 0.2 and ϕm = 0.2. The top panel shows the response of zt and the forecast of zt and µ, when the
initial uncertainty about µ is set as Ω = 0.5× V ar [zt]. The bottom panel shows the response of four-
period-ahead forecasts (zi,t+4|t). Different lines assume varying degrees of Ω. Remaining parameters
for the model environments are the same as in Figure 1.

Figure 5: βC and βI when learning about the long run
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This figure shows model predictions of the two regression coefficients in (2.6) and (2.5) for different
forecast horizons. The extent of cognitive noise is set as ϕ∗

n = 0.35 and ϕ∗
m = 0.35 (from Figure 2).

Remaining parameters are from the top panel of Figure 4. The solid line assumes no uncertainty about
the long-run mean(Ω = 0). The dashed line is when DM learns about the long run (Ω > 1).
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4 An Illustrative Macroeconomic Model

In this section, I study the macroeconomic implications of the proposed expectation-formation
model. Using a standard New Keynesian model, I demonstrate how expectations formed ac-
cording to the framework introduced in sections 1 and 3, can lead to increased inflation
variability. This variability worsens the central bank’s policy trade-off between stabilizing
inflation and output.

4.1 Firms’ Optimal Price Setting

Suppose firm i reconsiders its price Pi,t in period t. To maximize expected profits, it chooses
a new price that will remain fixed until the next opportunity for adjustment. The firm’s
problem can be expressed as follows:14

max
Pi,t

Ei,t

[
∞∑
h=0

αhQt,t+h

(
Pi,t Yi,t+h|t −Ψt+h

(
Yi,t+h|t

))]
Here, α is the probability of not resetting prices, Qt,t+h is the stochastic discount factor for
evaluating the future nominal payoffs generated at t+ h, Yi,t+h|t is the output demanded in
period t+ h if the price remains at the one chosen at time t, and Ψt+h is the (nominal) cost
function at time t+ h. Firm i takes into account that the demand Yi,t+h|t is given as

Yi,t+h|t =

(
Pi,t

Pt+h

)η

Ct+h,

where η is the elasticity of substitution among goods, Pt+k is the aggregate price at time
t+h, and Ct+h is the aggregate consumption at time t+h. I use the notation Ei,t to denote
firm i’s subjective expectation at time t, departing from the conventional New Keynesian
model’s assumption of the full-information rational expectations. I propose that the firm’s
expectations are formed according to the cognitive limitations proposed in earlier sections,
as will be discussed later.

The firm’s optimal price P ∗
i,t is derived from its first-order condition. Expressed as a

Taylor expansion around the zero-inflation steady state, this condition becomes

p∗i,t − pi,t−1 = Ei,t

[
∞∑
h=0

(αβ)h {(1− αβ) (mct+h −mc) + πt+h}

]
where I use lowercase to denote the log of the variable. Here, mct+h is the log of real

14. The new price maximizes the expected value of the firm’s (current market value) profits. Since this
pricing decision does not constrain any future decisions, it suffices to consider the effects of the choice on
expected profits in those future states in which the price has not yet again been re-optimized.
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marginal cost at t+ h (mc is its steady-state value), and πt+h is inflation at t+ h defined as
logPt+h − logPt+h−1. As detailed in Appendix D, the marginal costs do not depend on the
quantity that a firm supplies because of the assumed feature of the production function (i.e.,
the marginal product of labor does not depend on the quantity of production). Thus, firm i

treats the nominal marginal costs as evolving independently of its own pricing decision; they
only depend on aggregate variables that the firm takes as given.15 Let us define zt as below
to capture the aggregate terms in the firm’s first-order condition:

zt ≡ (1− αβ) (mct −mc) + πt. (4.1)

Thus, the firm’s expectations of the current and future zt+h pin down its subjectively optimal
price:

p∗i,t − pi,t−1 = Ei,t

[
∞∑
h=0

(αβ)h zt+h

]
(4.2)

Since firm’s objective depends only on aggregate conditions at the various dates t+h, under
rational expectations, the optimal price P ∗

i,t would be the same for all i that reconsider their
price at date t. However, under the expectation-formation model proposed in this paper,
the optimal choice P ∗

i,t may differ across firms because of their differing expectations.

4.2 Aggregate Economy

Real marginal costs. Real marginal costs are determined by the rest of the economy. As
detailed in Appendix D, the household optimization problem and market-clearing conditions
imply that

mct −mc = χxt + et. (4.3)

where χ is the sum of the coefficient of Relative Risk Aversion (of the utility function of
consumption) and the Frisch elasticity of labor supply, and xt is defined as yt − yet , where yet
is the efficient level of output. Finally, et is the cost-push shock16 that is an i.i.d. draw from
a zero mean Gaussian distribution.

Monetary policy. Given the existence of the cost-push shocks, the central bank cannot
perfectly stabilize both inflation and the output. Thus, the central bank faces a policy

15. I introduce this assumption for the sake of simplicity. However, even when the firm’s marginal product of
labor varies with the quantity supplied, the subjectively optimal price will still depend only on its expectations
about aggregate economic variables. See Gali (2008, Chapter 3).

16. I do not take a stance on the source of cost-push shocks, but one example can be a time-varying,
exogenous wage markup.
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trade-off in stabilizing the two variables. To capture the trade-off succinctly, I assume that
monetary policy is specified by a targeting rule of the form

xt = − θ

1− θ
πt, (4.4)

where the strength of inflation targeting is measured by θ ∈ [0, 1]. Complete inflation
stabilization is captured by θ = 1. In this case, in response to inflationary pressures from
the cost-push shock, the central bank drives output far below the efficient level to stabilize
inflation.

The targeting rule illustrates the relationship between xt and πt that the central bank
seeks to maintain in response to a fluctuation in the economy. The rule implies that the
central bank accepts inflation higher than its long-run target (assumed to be zero in the
model) if and only if there is a negative output gap. Likewise, the targeting rule requires
inflation to be lower than the long-run target when there is a positive output gap at the
same time.17

Aggregation. Price changes by individual firms aggregate into the overall inflation rate.
The aggregate price index can be expressed as

Pt =
[
α (Pt−1)

1−η + (1− α) (P ∗
t )

1−η] 1
1−η ,

where P ∗
t ≡

∫
P ∗
i,t di is the average reset price of firms that reconsider their prices at time

t. The first-order Taylor expansion of the price index implies πt = (1− α) (p∗t − pt−1).
Therefore, we can derive the aggregate inflation by averaging the expectations of firms:

πt = (1− α)Ēt

[
∞∑
h=0

(αβ)h zt+h

]
(4.5)

Here, Ēt averages the expectations Ei,t of all individual firms.

Determination of zt. By substituting equations (4.3) and (4.4) into (4.1), we can derive
that zt is determined as

zt =

{
1− (1− αβ)χ

θ

1− θ

}
πt + (1− αβ) et (4.6)

Equations (4.5) and (4.6) together imply that zt is determined by firms’ expectations about
current and future zt and the exogenous shock et. Thus, once we specify how firms forecast
zt, we have a complete theory of how inflation, the output gap, and zt evolve.

17. The implication of such a targeting rule for the path of interest rates can be derived using the household
inter-temporal optimization condition.
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4.3 Firms’ Macroeconomic Expectations

I assume firms form forecasts under the belief that zt is an i.i.d. process as below.

zt ∼ N
(
µ, σ2

z

)
. (4.7)

This assumption will align with FIRE as will be discussed. Importantly, firms may not have
perfect awareness of the current value of zt or the mean of the distribution from which it is
drawn. (For simplicity, σ2

z is assumed to be known to DM.) Firms’ prior beliefs about the
mean are modeled as:

µ ∼ N (0, Ω)

for some positive Ω. This is the environment similar to the one discussed in the previous
section.

I denote the average beliefs of firms about zt and µ as ẑt and µ̂t, respectively. Then, ẑt
and µ̂t have the following law of motion:

ẑt = λ (1− κz) µ̂t−1 + κz zt (4.8)

The average expectation about the mean is

µ̂t = λ (1− κµ) µ̂t−1 + κµ zt. (4.9)

where κz ad κµ are the long-run Kalman gains when updating beliefs about zt and µ, re-
spectively. Firms’ beliefs are influenced by the realized zt, which are determined by the rest
of the aggregate economy, including the monetary policy.

4.4 Expectation Formations and Inflation Dynamics

Aggregate inflation is determined by firms’ expectations about current and future values of
zt, as equation (4.5) illustrates. As detailed in equations (4.8) and (4.9), these expectations
depend on two state variables: µ̂t−1 (the average belief about µ in the previous period) and
the realized value of zt. Furthermore, πt and the cost-push shock et determine the evolution
of zt, as described in equation (4.6). Combining these equations, we can infer that the
inflation process is a linear function of et and µ̂t−1:

πt = φe et + φµ µ̂t−1 (4.10)
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We can see that πt is a persistent process since µ̂t−1 is a function of lags of zt, which in turn
is a function of lags of πt and et. The coefficients φe and φµ are derived as

φe =
δ

1 + δ χ θ
1−θ

+ 1
α

1−κ̂
κ̂

φµ =
1

1 + δ χ θ
1−θ

+ 1
α

1−κ̂
κ̂

1− α

α

b̂

κ̂
,

where δ ≡ (1−α)(1−αβ)
α

, κ̂ = κz + κµ, and b̂ = λ(1 − κz) +
αβ

1−αβ
λ(1 − κµ). Note that under

perfect memory assumption, µ̂t−1 is equal to the actual value of µ, which is set as zero.
The derived φe and φµ converge to zeros as the central bank adopts full inflation targeting
(θ → 1). See Appendix D for detailed derivation.

Comparison of different expectation assumptions. Different assumptions about ex-
pectation formation result in different inflation dynamics, as captured by κ̂ and b̂. I compare
three cases: FIRE (ϕn = 0 and ϕm = 0), the conventional models of information frictions
(ϕn > 0 and ϕm = 0), and finally the proposed expectation model (ϕn > 0 and ϕm > 0).

Under FIRE, firms are perfectly aware of zt and have learned the mean of its distribution.
Therefore, firms expect the future marginal costs to be zero on average (since et fluctuates
around zero) and set their prices to match the current marginal costs. Aggregate inflation
is thus proportional to the realized zt. The inflation process is derived as follows:

πt =
δ

1 + δ χ θ
1−θ

et

With conventional models of information frictions, firms are imperfectly aware of zt
though they have come to learn the true µ, which is zero in our example. Thus, their
subjectively optimal price will still equal their perceived value of the current marginal costs
(as they correctly expect that their future marginal costs to be zero on average). The inflation
process is derived as

πt =
δ

1 + δ χ θ
1−θ

+ 1
α

1−κ∗
z

κ∗
z

et,

where κ∗z refers to the Kalman gain (when updating firms’ belief about zt) under the perfect-
memory assumption. Intuitively, firms’ reset prices are less responsive to the realized cost-
push shocks than under FIRE because firms are not perfectly aware of zt when resetting
prices. Accordingly, aggregate inflation remains proportional to cost-push shocks, but the
dependence is more muted compared to FIRE.

Under the proposed model, the inflation process is quite different from the above cases.
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It is derived as follows:

πt = ρµ πt−1 + γ0 et + γ1 et−1

Here, the coefficients on the cost-push shocks are derived as γ0 = φe + φmκµ and γ1 =

−φe λ (1− κµ). Inflation is persistent, unlike in the previous two expectation models. This
is due to the fluctuating beliefs about the long run, as the coefficient ρµ is the serial correlation
of µ̂t.

4.5 Parameterization

I parameterize the model using standard values adopted in the literature. I set χ = 2 to
reflect that both the consumption utility and labor disutility functions are characterized as
a log function. The time discount factor is set as β = 0.99 (the time unit is quarter). The
frequency of price changes is chosen to match the slope of the Phillips curve estimated in the
literature. The inflation response to a 1% increase in the output gap (holding the expectation
terms) is estimated to be 0.024 in Rotemberg and Woodford (1997) and 0.0062 in Hazell
et al. (2022). I target 0.01 as a midpoint. The parameters describing the expectation process
come from the estimation section. I take the mean estimates, which is ϕn = 0.36, ϕm = 0.10,
and Ω = 0.32× V ar[zt]. For detailed discussions, refer to the following section 5.

4.6 Monetary Policy and Inflation Variability

We have seen that the expectation-formation process shapes the statistical properties of
inflation dynamics. In this section, I consider the strength of inflation targeting and its
effect on inflation variability. The top left panel in Figure 6 shows the inflation variability
for a given monetary policy rule on the x axis, which corresponds to the strength of the
inflation targeting policy. I discuss the prediction for three different expectation assumptions:
FIRE (black dotted line), conventional information friction model (blue dashed line), and
proposed model (orange solid line). Naturally, stronger inflation targeting stabilizes the
inflation process for all expectation assumptions. Furthermore, conventional information-
friction models predict more stable inflation than under FIRE; since firms are not perfectly
aware of the realized marginal cost, the prices do not correctly reflect firms’ costs. In contrast,
when firms are subject to both noisy news and noisy memory, they are imperfectly aware
of the realized marginal cost and its long-run mean. Therefore, their expectations of future
marginal costs fluctuate, inducing more price fluctuations. The top right panel of Figure 6
displays the central bank’s trade-off in simultaneously stabilizing inflation and the output
gap. Under the conventional information-frictions model, the policy frontier shifts inward
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compared to FIRE; the economy faces less variable inflation at any output variability. In
the baseline model, the policy frontier shifts, indicating that for any output variability, the
economy bears more variable inflation. This result highlights the likely challenge central
bank may face when economic agents face the cognitive limitations of the sort discussed in
the previous section.

Figure 6: The effect of monetary policy

(a) Inflation variability
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The figures above illustrate the macroeconomic dynamics for varying degrees of strength of inflation targeting
(θ). For all figures, three lines correspond to different expectation-formation assumptions; solid orange line
correspond to the proposed model, blue dashed line to conventional information frictions models, and the
black dotted line to the no-cognitive-noise benchmark. For each targeting rule θ on the x axis, the left panel
displays the inflation variability, and the right panel shows the policy trade-off between stabilizing inflation
and output gap. The model parameters are stated in the main text.

5 Estimation: The Extent of Cognitive Constraints

In this section, I estimate the two cognitive constraints using professional forecasters’ survey
data. I show that the conventional models of information frictions underestimate the severity
of frictions.
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5.1 Data

Survey forecast data are from the Survey of Professional Forecasters (SPF), administered
by the Federal Reserve Bank of Philadelphia. Once every quarter, around forty forecasters
participate in this survey. The earliest survey started in 1968, and I use survey forecasts made
until the second quarter of 2022. For the estimation exercise, I focus on the Gross Domestic
Output, both real and nominal, to investigate how forecasters perceive the overall economic
activity in the U.S. The model environment illustrated in Section 1 and 3 is particularly
suitable to describe the GDP forecasts in that forecasters can acquire information about the
current state but not much about the long-term state.18

For data on the time series of macroeconomic variables, I use the Real-Time Data Set
from the Federal Reserve Bank of Philadelphia. This data set provides the history of data
releases for each variable, which can be particularly important in studying the variables in the
National Income and Product Accounts (NIPA); they are often redefined or reclassified, due
to which often the most recently available data may not correspond to the same variables
forecast by the professional forecasters in the data set. The earliest release (“Advance"
estimates) becomes available about a month after the quarter ends. Later releases of the
NIPA incorporate more complete and detailed information. Thus, I treat the third estimates,
released about three months after the quarter ends, as a true realization of the GDP.

5.2 Estimation Steps

Data-generating process. The unit of the forecasted variable I focus on is percent
changes in GDP over twelve months. I furthermore suppose that such percent changes
are described by the data-generating process in Section 1 and 3. Thus, each series has three
components: trend, cycle, and irregular. I use an approximate Bandpass filter to decompose
the third release of each GDP variable, following Baxter and King (1999).19 The autoregres-
sive process of the trend and cycle is then estimated using OLS. The results are reported in
Table 1.

Estimation targets. The regression coefficients of interest are the slope terms of the speci-
fications (2.6) and (2.5). For the estimation of regression (2.6), I use its “close-cousin” version
to bypass several theoretical and statistical issues of the original specification proposed in

18. In comparison, long-term forecasts of inflation and interest rates are more likely to be influenced by the
monetary authorities’ policies, which requires careful modeling of all the term-structure related information
available to forecasters, which is beyond the scope of the current paper.

19. The cutoff period for the trend component is set as 32 quarters and that for the irregular component
is set as 3 quarters. 12 quarters of lags and leads each are included in the filter.
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Coibion and Gorodnichenko (2015).20 Based on the proposal of Goldstein (2023) and Gemmi
and Valchev (2023), I use the following specification to measure how sticky forecasts are.21

Fi,t yt+h − Ft yt+h = αC + βC (Fi,t−1 yt+h − Ft−1 yt+h) + errori,t+h|t−1 (5.1)

This specification intuitively quantifies the size of Kalman gains when forecasters revise their
views in response to news: If forecasters’ relative positions are very persistent, their views
are sticky and Kalman gains are small. Compared to Coibion and Gorodnichenko (2015),
this specification partials out the effects of the common noise (ν̃t in the current paper) by
de-meaning individual forecasts.

Thus, two regression coefficients, βC from equation (5.1) and βI from equation (2.5),
are used as estimation targets. For both GDP measures, three-quarter-ahead forecasts are
used. I pool all forecasters to estimate the two regressions to overcome the power issue.
Notably, pooling the data can be problematic if the relationships captured in equations (5.1)
and (2.5) are different across forecasters. To limit such problems, I include forecaster-specific
intercepts and cluster the standard errors two-way to account for correlations of the residuals
within each forecaster and each period. Furthermore, I only use survey data from forecasters
who participated long enough so that the time-variations within each individual are better
reflected; specifically, I limit data to those with at least ten observations. Finally, I use Huber
robust estimator to limit the influence of outliers. Table 2 reports the estimated regression
coefficients.

Estimation strategy. I estimate two cognition parameters, ϕn and ϕm, that quantify the
severity of the cognitive limitations in the attention and memory system. I pin down the two
remaining parameters as follows. The noise in the external data, as described in equation
(1.5), is approximated by the revision of the NIPA series. Since the gap between the third
and the initial release largely reflects the limited real-time information availability, I use the
standard deviation of such gap to pin down σν in equation (1.13). The results are reported
in the last panel of Table 1. Furthermore, I assume that the longest forecast horizon of the
loss function (1.3) is eight quarters ahead since the SPF asks forecasters to submit their
quarterly forecasts up to two years ahead, but the model prediction changes very little even
for extremely longer forecast horizons.

20. As recognized by the authors, the regression coefficient is attenuated when noise in the external data is
correlated among forecasters. The estimated coefficients are shown to be less reliable in other dimensions as
well. Hajdini and Kurmann (2023) documents the fallibility of the estimation when structural changes are a
concern, and Bianchi et al. (2022) documents the lack of out-of-sample predictability. These findings suggest
a possibility of a small sample problem; the time-series estimation is likely too noisy to test the statistical
relationship, given the modest length of the data series.

21. I keep the notation βC to reduce notation burdens.
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Table 1: Data-generating Process

ρ σϵ ρµ σµ ση σν

Real GDP 0.878 1.098 0.991 0.105 0.369 0.143

Nomianl GDP 0.872 1.089 0.999 0.112 0.409 0.136

The first two panels of the table report the estimated data-generating process of both GDP measures.
Approximate Bandpass filter is used to decompose the series into trend, cycle, and irregular components.
The exact details of the filter follow the discussion in Baxter and King (1999). An AR(1) model is
used to approximate the process of the cycle (ρ and σϵ) and the trend (ρµ and σµ), both estimated
using OLS. The standard deviation of the irregular component (ση) is listed in the third panel. The
last panel describes the noise in the external data (σν), as approximated by the revision of the NIPA
series.

Table 2: Estimation Targets: Regression Coefficients

βC SD p-value βI SD p-value

Real GDP 0.54 0.01 0.00 -0.17 0.05 0.00

Nominal GDP 0.54 0.02 0.00 -0.23 0.05 0.00

This table reports the regression coefficients used as estimation targets for each GDP measure. The
first panel displays the coefficient estimated in regression (5.1). The second panel shows the regression
coefficient estimates of (2.5). For both, I report the results of Huber robust estimator when individual
fixed effects are included, and the standard errors are two-way clustered in each forecaster and date.

5.3 Estimation Results

The first panel of Table 3 reports the estimates of noisy news and noisy memory (ϕn and ϕm)
and their standard errors. These estimates almost exactly match the estimation targets in
Table 2 (though it is not guaranteed to do so), and the standard errors are quite tight as well.
The second panel shows the estimated size and standard errors of ϕn when assuming perfect
memory. This result corresponds to the estimation exercises proposed using conventional
information friction models. Estimated ϕn, assuming both noisy news and noisy memory, is
about 50% larger than those assuming noisy news alone. This point is made in Section 2,
where I showed that the methodology in Coibion and Gorodnichenko (2015) underestimates
the magnitude of ϕn because it mis-attributes the extra sensitivity from noisy memory to
low ϕn.

Table 4 assesses the model’s capability in explaining non-targeted moments. I investigate

42



whether the estimated model can generate realistic variations observed in survey data. For
this purpose, I show variations in forecasts and forecast revisions. For each variable, I
report variations in the time series (that is, dispersion of the consensus forecasts) and in
the cross-section (that is, dispersion of the individual forecasts at any given time). The
data moments are estimated using Huber Robust estimator, and individual fixed effects are
controlled when estimating the cross-section moments. I compare these empirical moments
to the model predictions of the same objects. The estimated model provides a reasonable
quantitative fit for most variations.

Table 3: Estimation Results: Cognitive Parameters

noisy news & noisy memory noisy news only

ϕn SD ϕm SD ϕn SD ϕm SD

Real GDP 0.43 0.07 0.12 0.04 0.29 0.02 0.0 -

Nominal GDP 0.28 0.06 0.08 0.03 0.18 0.01 0.0 -

This table reports the estimated severity of cognitive limitations, “noisy news” (ϕn) and “noisy memory”
(ϕm). The first panel displays the estimated size of ϕn and ϕm and their standard errors. The second
panel shows the estimation under the perfect-memory assumption; the estimated size of ϕn and the
standard error is reported.

Table 4: Estimation Fit: Variations

Variations in Forecasts Variations in Revisions

Cross-section Time Cross-section Time

Data Model Data Model Data Model Data Model

Real GDP 0.60 0.54 1.11 1.52 0.53 0.51 0.48 0.13

Nominal GDP 0.76 0.93 2.23 5.51 0.70 0.87 0.51 0.20

The table compares the predictions of the estimated model with the non-targeted data moments. The
first panel reports variations in forecasts in cross-sections and time. The second panel shows variations
in forecast revisions in cross-sections and time. The data moments are estimated using Huber Robust
estimator; for cross-section moments, forecaster fixed effects are controlled.
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6 Conclusion

This study aims to identify the constraints that prevent economic agents from developing
expectations aligned with full information rational expectations. My analysis demonstrates
that the finite capacity to process information, both internal and external, explains the
diverse characteristics of survey forecasts that traditional expectations-formation models
have difficulty addressing.

Recognizing these cognitive limitations allows us to gain valuable insights into longer-
term expectation, where data is often scarce. My analysis predicts that long-run expectations
can exhibit overreactions, even when the near-term expectations are revised sluggishly. This
insight carries far-reaching implications for understanding how economic agents perceive
the long-run economy. It suggests that even seemingly stable long-run expectations may
become unanchored. In particular, using an illustrative macroeconomic model, I show that
the cognitive limitations discussed in this paper can make the central bank’s trade-off in
stabilizing both inflation and the output gap more challenging.

The prediction of horizon-dependent forecast sensitivity, which is not immediately ob-
vious ex ante, highlights the need for better models of how economic agents form macroe-
conomic perceptions. This study examines the cognitive constraints influencing these per-
ceptions, provides a tractable model to analyze and estimate them, and demonstrates how
integrating empirically validated expectations-formation models can enhance macroeconomic
analysis.
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APPENDIX

Sung,
“Macroeconomic Expectations and Cognitive Noise”

A Derivation of the Optimal Cognitive Process

The law of motion of the state vector xt is described as below.

xt = d+ Axt−1 +B ϵt, ϵt ∼ N (O, Σϵ)

where d, A, B, Σϵ are constant parameters known to DM. (When analyzing the assumption
of the unknown µ, I put µ inside xt.) And DM’s “default” prior about xt is described as

xt ∼ N (µx, Σx)

Below I discuss the statistical properties of DM’s forecasts under the probability measures
that jointly consider the state vector xt, DM’s cognitive states, mi,t and ni,t, and the DM’s
default prior about xt. Thus, these represent DM’s perceived probability distribution, rather
than the ‘actual distribution.

For any given state vector xt, I show the optimal structure of the cognitive process,
described by the sequence of {Kt,Σut,Λt,Σωt}∞t=0, that minimizes the loss function (1.11)
subject to the information environment (1.6), (1.7), (1.9), and (1.10).

A.1 The Optimal Structure for the Representation

I show below the optimal encoding of the cognitive state, mi,t and ni,t. In particular, I show
that the optimal mi,t stores E [xt|Mi,t] with noise while the optimal ni,t records E [xt|Nt]
with noise. Thus, the dimension of the optimal mi,t and ni,t is no bigger than the dimension
of the state vector xt.

Step 1: Partition of mi,t and ni,t

Partition of mi,t We can partition mi,t = Λt ·Mi,t + ωi,t in the following formm⃗i,t

m̃i,t

 =

Λat Λb,t

Λct Λdt

 M⃗i,t−1

E [xt|Mi,t]

+

ω⃗i,t

ω̃i,t

 (A.1)

where the elements of M⃗i,t are orthogonal to E [xt|Mi,t] and M⃗i,t−1 and E [xt|Mi,t] span the
same vector space as Mi,t. The terms ω⃗i,t and ω̃i,t are Gaussian innovations. I impose the
following normalization assumption

E [E [xt|Mi,t]|mi,t] = m̃i,t + cons · E [xt|Mi,t]
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This relationship holds if and only if E [xt|Mi,t]− m̃i,t is uncorrelated with all the elements
in mi,t. Two requirements summarize this relationship.

Cov [E [xt|Mi,t]− m̃i,t, m⃗i,t] = O⃗ (A.2a)
Cov [E [xt|Mi,t]− m̃i,t, m̃i,t] = O (A.2b)

The second requirement implies that

Cov [E [xt|Mi,t] , m̃i,t] = V ar [m̃i,t]

⇔ V ar
[
Λct M⃗i,t + ω̃i,t

]
= (1− Λdt)V ar [E [xt|Mi,t]] Λ

′
dt (A.3)

The feasible set of Λdt is defined as the collection of Λdt under which the resulting right-hand
side is a proper variance-covariance matrix (that is, symmetric and p.s.d.).

Partition of ni,t Similarly, we can partition ni,t = Kt ·Nt + ui,t into the following formn⃗i,t

ñi,t

 =

Kat Kbt

Kct Kdt

 N⃗t

E [xt|Nt]

+

u⃗i,t+1

ũi,t+1

 (A.4)

where N⃗t is the components in Nt that are orthogonal to E [xt|Nt], thus E [xt|Nt] and that
N⃗t and E [xt|Nt] span the same vector space as Nt. Both u⃗i,t+1 and ũi,t+1 are Gaussian
innovations. As before, I impose the following normalization assumption

E [xt|mi,t, ni,t] = ñi,t + cons · E [xt|mi,t]

This relationship holds if and only if E [xt|Nt]− ñi,t is uncorrelated with all the elements in
ni,t conditional on mi,t. That is, the two requirements are

Cov [xt − ñi,t, n⃗i,t|mi,t] = O⃗ (A.5a)
Cov [xt − ñi,t, ñi,t|mi,t] = O (A.5b)

We can see that (A.5b) implies

Cov [xt, KdtE [xt|Nt]|mi,t] = V ar
[
Kct N⃗t +KdtE [xt|Nt] + ũi,t

∣∣∣mi,t

]
⇔ V ar

[
Kct N⃗t + ũi,t

∣∣∣mi,t

]
= Cov [xt, KdtE [xt|Nt]|mi,t]−Kdt V ar [E [xt|Nt]|mi,t] K

′
dt

(A.6)

The feasible set of Kdt is defined as Kdt that yields the right-hand-side term to be a proper
variance-covariance matrix (that is, symmetric and p.s.d.).

Without loss of generality, I express that

E [xt|Nt] = C xt + νt, νt ∼ N (O, Σν) (A.7)

where the matrices C and Σν are known to DM. This expression further simplifies the
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normalization condition (A.6).

V ar
[
Kct N⃗t + ũi,t

∣∣∣mi,t

]
= (I −KdtC)V ar [xt|mi,t] (KdtC)

′ −KdtΣνK
′
dt (A.8)

Step 2: Forecast accuracy depends only on Kdt and Λdt

We observe from (A.1) that

E [xt|Mi,t]|mi,t = E [xt|Mi,t]| m̃i,t

That is, the information in mi,t about E [xt|Mi,t] is completely captured by m̃i,t, which fol-
lows from (A.2a). We can furthermore see that Λdt uniquely determines the prior uncertainty
E [xt|mi,t].

V ar [xt| m̃i,t] = V ar [xt]− Cov [m̃i,t, xt]

= V ar [xt]− ΛdtCov [E [xt|Mi,t] , xt]

= V ar [xt]− Λdt V ar [E [xt|Mi,t]]

Likewise, we also observe from the proposed partition (A.4) that

xt|mi,t, ni,t = xt|mi,t, ñi,t

That is, further knowledge of n⃗i,t does not improve the estimate of xt|mi,t, ñi,t. This follows
from (A.5a). Furthermore, we can see thatKdt uniquely determines the posterior uncertainty.

V ar [xt|mi,t, ñi,t] = V ar [xt|mi,t]− Cov [ ñi,t, xt|mi,t]

= V ar [xt|mi,t]−KdtCov [E [xt|Nt] , xt|mi,t]

= (I −KdtC)V ar [xt|mi,t]

Thus, for a given level of V ar [xt|Mi,t], which is predetermined at time t, the matrices Λdt

and Kdt uniquely determine the variances V ar [xt| m̃i,t] and V ar [xt|mi,t, ñi,t].

Step 3: The Optimal Choice of Λt and Kt

Since the elements of Λt and Kt other than Λdt and Kdt do not matter for the forecast
accuracy, we can furthermore conclude that it is optimal to have them equal to zero. To see
why note that

I (mi,t;Mi,t) = I
(
(m⃗i,t, m̃i,t) ;

(
M⃗i,t−1, E [xt|Mi,t]

))
As discussed in Appendix C.2 of Silveira et al. (2020), the lower bound is equal to I (m̃i,t;E [xt|Mi,t]),
which again is achieved when Λat = Λb,t = Λct = O. Likewise,

I (ni,t;Nt) = I
(
(n⃗i,t, ñi,t) ;

(
N⃗t, E [xt|Nt]

))
whose lower bound of this mutual information is equal to I (ñi,t;E [xt|Nt]). This lower bound
is achieved when Kat = Kbt = Kct = O.
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Summary

Using the following notations to describe the DM’s prior and posterior belief,

xt|mi,t ∼ N
(
xmi,t|t, Σ

m
t|t
)

(A.9)

xt|mi,t, ni,t ∼ N
(
xi,t|t, Σt|t

)
(A.10)

The optimal representation of internal information has the following law of motion.

m̃i,t = Λ̃t x
m
i,t|t + ω̃i,t (A.11)

where the variance of memory noise ω̃i,t is determined from (A.3) to be

Σωt = (I − Λ̃t) (Σx − Σt|t−1) Λ̃
′
t (A.12)

This representation yields the time-t prior belief as follows.

xmi,t|t = (I − Λ̃t)µx + Λ̃txi,t|t−1 + ω̃i,t (A.13)

Σm
t|t = (I − Λ̃t)Σx + Λ̃t Σt|t−1 (A.14)

Likewise, the optimal representation of external information results in

ñi,t = K̃t xt + ν̃t + ũi,t (A.15)

where the variance of attention noise ũi,t is derived from (A.8) as

Σut = (I − K̃t)Σ
m
t|t K̃

′
t − Σ̃ν (A.16)

This representation characterizes the time-t posterior belief as

xi,t|t = (I − K̃t)x
m
i,t|t + K̃t xt + ν̃t + ũi,t (A.17)

Σt|t = (I − K̃t) Σ
m
t|t (A.18)

where I redefine K̃t ≡ KdtC and ν̃t ≡ Kdt νt (so that Σ̃ν ≡ KdtΣνK
′
dt).

A.2 Specification of K̃t

Before deriving the feasible set of K̃t, I make a simplifying assumption that the news vector
provides information about some linear combination of the state vector xt. In other words,
we can express that

Nt = c′ xt + ν̄t, ν̄t ∼ N
(
0, σ2

ν

)
(A.19)

This also implies that we can express the optimal ni,t as

ñi,t = κt n̄i,t (A.20)

where κt is a column vector and n̄i,t is a uni-variate random variable defined as

n̄i,t = κct (c
′xt + ν̄t) + ūi,t
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for some positive scalar κct that remains to be specified, and the idiosyncratic noise ūi,t
follows a Gaussian distribution N (0, σ2

ut). In summary, the noisy representation of external
information is described as (A.15) where the loading matrix K̃t, the variance of ν̃t, and the
variance of attention noise ũi,t are derived as a function of κt, κct, and σ2

ut as follows.

K̃t = κct κt c
′

Σν = σ2
ν κ

2
ct κt κ

′
t

Σut = σ2
ut κt κ

′
t

The normalization assumption (A.5b) implies that

κct Σ
m
t|t c κ

′
t =

(
κ2ct(c

′Σm
t|t c+ σ2

ν) + σ2
ut

)
κt κ

′
t

With ei denoting the column vector that picks out the ith element of xt, it must then be
that

e′i κt =
κct (e

′
i Σ

m
t|t c)

κ2ct(c
′Σm

t|t c+ σ2
ν) + σ2

ut

(A.21)

for all i. I further normalize the first element of the column vector κt to be one, i.e., e′1 κt = 1.
This implies that

σ2
ut = κct(e

′
1Σ

m
t|tc)− κ2ct(c

′Σm
t|tc+ σ2

ν). (A.22)

Thus, the value of σ2
ut will be determined as a function of κct, and any κct ∈

[
0,

e′1Σ
m
t|tc

c′Σm
t|tc+σ2

ν

]
ensures that the resulting σ2

ut is non-negative. Substituting (A.22) into the (A.21) results in
the expression for the column vector κt as

κt =
1

e′1Σ
m
t|t c

Σm
t|t c. (A.23)

Using the information constraint, we can derive that

I (ni,t;Nt) = I (n̄i,t;Nt)

= −1

2
log

(
1− κ2ct V ar [Nt]

κ2ct V ar [Nt] + σ2
ut

)
The constraint I (ni,t;Nt) ≤ −1

2
log ϕn then implies that

σ2
ut

κ2ct
≥ ϕn

1− ϕn

V ar [Nt]

Substituting (A.22) yields that

κct ≤
e′1Σ

m
t|tc

c′Σm
t|tc+ σ2

ν +
ϕn

1−ϕn
(c′Σxc+ σ2

ν)
(A.24)

Thus the optimal value of κct corresponds to the upper bound in (B.34). Then, the resulting
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σ2
ut is

σ2
ut = κ2ct

(
ϕn

1− ϕn

)
(c′Σxc+ σ2

ν) (A.25)

A.3 Specification of Λ̃t

The mutual-information capacity (1.10) constrains the choice of Λ̃t. We can derive that

I (mi,t;Mi,t) = I
(
m̃i,t;xi,t|t−1

)
= h (m̃i,t)− h

(
m̃i,t|xi,t|t−1

)
=

1

2
log det (V ar [m̃i,t])−

1

2
log det

(
V ar

[
m̃i,t|xi,t|t−1

])
=

1

2
log det

(
V ar

[
xi,t|t−1

]
Λ̃′

t

)
− 1

2
log det

((
I − Λ̃t

)
V ar

[
xi,t|t−1

]
Λ̃′

t

)
= −1

2
log det

(
1− Λ̃t

)
≤ −1

2
log ϕm

Therefore, it remains to specify Λ̃t that satisfies the following inequality.

det
(
I − Λ̃t

)
≥ ϕm

Below I describe the optimization problem to pin down the optimal Λ̃t. First, I discuss a
chance of variable to ease the optimization.

The Change of the Choice Variable

There are two requirements for the feasibility of Λ̃t. First, the resulting Σm
t|t is a symmetric

and positive semidefinite matrix. Second, the diagonal elements of Σm
t|t are bigger than those

of Σt|t−1 and smaller than those of Σx. That is, under any feasible Λ̃t, both Σm
t|t −Σt|t−1 and

Σx − Σm
t|t are proper variance-covariance matrices (symmetric and positive semidefinite).

It is useful to define Λ̄t, which is simply a rotation of Λ̃t.

Λ̄t = V ar
[
xi,t|t−1

]− 1
2 Λ̃t V ar

[
xi,t|t−1

] 1
2

We could confirm that the same accuracy constraint (1.10) applies.

det
(
I − Λ̄t

)
= det

(
I − V ar

[
xi,t|t−1

]− 1
2 Λ̃tV ar

[
xi,t|t−1

] 1
2

)
= det

(
V ar

[
xi,t|t−1

]− 1
2

(
I − Λ̃t

)
V ar

[
xi,t|t−1

] 1
2

)
= det

(
I − Λ̃t

)
Therefore, I use Wt = I − Λ̄t as a choice variable. Any Wt is feasible as long as Wt and
I −Wt are positive semidefinite.
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The Constraints

The prior uncertainty is formed according to

Σm
t|t = Σt|t−1 +

(
I − Λ̃t

)
V ar

[
xi,t|t−1

]
= Σt|t−1 + V ar

[
xi,t|t−1

] 1
2
(
I − Λ̄t

)
V ar

[
xi,t|t−1

] 1
2

= Σt|t−1 + V ar
[
xi,t|t−1

] 1
2 Wt V ar

[
xi,t|t−1

] 1
2

Thus, we can see that the matrix Wt is not only positive semidefinite, but also symmetric.
And the posterior uncertainty can be described as

Σt|t = (I − K̃t) Σ
m
t|t = Σm

t|t −
1

Ωm
t|t

Σm
t|t c c

′Σm
t|t

where Ωm
t|t is defined as

Ωm
t|t ≡ c′ Σm

t|t c+ σ2
ν +

ϕn

1− ϕn

(
c′Σx c+ σ2

ν

)
.

The Optimization Problem

The optimization problem can then be written as

min
Wt

tr
(
Σt|tQ

)
subject to the law of motions of the subjective uncertainty

Σm
t|t − Σt|t−1 =

(
Σx − Σt|t−1

) 1
2 Wt

(
Σx − Σt|t−1

) 1
2

Ωm
t|t = c′ Σm

t|t c+ σ2
ν +

ϕn

1− ϕn

(
c′Σx c+ σ2

ν

)
Σt|t = Σm

t|t − Σm
t|t c

(
Ωm

t|t
)−1

c′ Σm
t|t

along with the requirement that both Wt and I−Wt are positive semidefinite and symmetric.
Note that when deciding which information to recall at time t (or equivalently, when

deciding which information to store at time t − 1), such a decision takes into account the
noisy news that is available at time t. That is, the availability (and the quality) of extra
information not from one’s memory will affect which information is worthy of remembering.
While this is a natural trade-off given the restriction that memory cannot perfectly store all
the past information, it is also one that has not been investigated in the literature yet.

Setting up the Lagrange Multipliers

Since Wt is symmetric, it can be eigen-decomposed as

Wt = U (I −D) U ′
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where D is a diagonal matrix and U U ′ = I. The constraints that Wt and I−Wt are positive
semidefinite are equivalent to the constraints that I − D and D are positive semidefinite.
The diagonal elements of I − D and D should be non-negative. The Lagrange multipliers
for each inequality constraint can be stored in a diagonal matrix, Ῡ1 and Ῡ2. Finally, I
can define Υ1 = U Ῡ1 U

′ and Υ2 = U Ῡ2 U
′. Note that Υ1Wt = U Ῡ1 (I −D) U ′ and

Υ2 (I −Wt) = U Ῡ2DU ′. We can see that the inequality constraint can be expressed as
tr (Υ1Wt) ≥ 0 and tr (Υ2 (I −Wt)) ≥ 0. This is because tr (Υ1Wt) = tr

(
Ῡ1 (I −D)

)
and

tr (Υ2 (I −Wt)) = tr
(
Ῡ2D

)
.

We also have equality constraints on the law of motions of subjective uncertainty. For
each constraint, I construct a symmetric matrix Γi whose kth row contains the Lagrangian
multiplier for each kth column of the equality conditions.

The Lagrangian Problem and the First Order Conditions

The Lagrangian problem is as follows.

max− tr
(
Σt|tQ

)
− tr

(
Γ1

((
Σx − Σt|t−1

) 1
2 Wt

(
Σx − Σt|t−1

) 1
2 + Σt|t−1 − Σm

t|t

))
− tr

(
Γ2

(
c′ Σm

t|t c+
ϕn

1− ϕn

(
c′Σx c+ σ2

ν

)
+ σ2

ν − Ωm
t|t

))
− tr

(
Γ3

(
Σm

t|t − Σm
t|t c

(
Ωm

t|t
)−1

c′ Σm
t|t − Σt|t

))
+ tr (Υ1Wt) + tr (Υ2 (I −Wt)) + µ (det (Wt)− ϕm)

where the “Langrangian multipliers” Γi and Υi for all i are symmetric matrices.
The first order conditions subject to Wt, Σm

t|t, Ω
m
t|t and Σt|t are (in that order)

−
(
Σx − Σt|t−1

) 1
2 Γ1

(
Σx − Σt|t−1

) 1
2 +Υ1 −Υ2 + µ det (Wt)W

−1
t = O (A.26a)

Γ1 − cΓ2 c
′ − Γ3 + c

(
Ωm

t|t
)−1

c′Σm
t|t Γ3 + Γ3Σ

m
t|t c
(
Ωm

t|t
)−1

c′ = O (A.26b)

Γ2 −
(
Ωm

t|t
)−1

c′ Σm
t|t Γ3Σ

m
t|t c

(
Ωm

t|t
)−1

= O (A.26c)

−Q+ Γ3 = O (A.26d)

and the slackness conditions are

Υ1Wt = O, Υ1 ⪰ O, Wt ⪰ O (A.27a)
Υ2 (I −Wt) = O, Υ2 ⪰ O, (I −Wt) ⪰ O (A.27b)

and

µ (det (Wt)− ϕm) = 0, µ ≥ 0, det (Wt) = ϕm (A.28)

We can first rearrange (A.26b)-(A.26d). Note that Γ3 = Q (as implied by (A.26d)) and using
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the notation K̃t ≡ Σm
t|t c

(
Ωm

t|t

)−1

c′, we can express (A.26b) as

Γ1 − cΓ2 c
′ −Q+ K̃ ′

tQ+QK̃t = O

and (A.26c) as

cΓ2 c
′ − K̃ ′

tQK̃t = O

which together result in

Γ1 =
(
I − K̃t

)′
Q
(
I − K̃t

)
Next, I’d like to solve for Wt that characterizes the optimal memory system. First, multi-
plying (A.26a) by Wt (I −Wt) on the left yields

−
(
Σx − Σt|t−1

) 1
2 Γ1

(
Σx − Σt|t−1

) 1
2 Wt (I −Wt) + µϕm (I −Wt) = O (A.29)

after applying the slackness conditions (from which (Υ1 −Υ2)Wt (I −Wt) = O). Further-
more, we observe the following eigen-decomposition is feasible:(

Σx − Σt|t−1

) 1
2 Γ1

(
Σx − Σt|t−1

) 1
2 = U GU ′

That is, it should share the basis with Υ1, Υ2 and Wt. Then, the above expression can be
written as

U (µϕm I −G (I −D))DU ′ = O (A.30)

Note that D should satisfy D ⪰ O, I −D ⪰ O, and det (I −D) = ϕm.

The Solution to the Lagrangian Problem

The solution of D can be found as follows. Let’s first rearrange U and G so that the diagonal
elements in G are in descending order. Thus, the eigenvalues stored in G are described as
g1 ≥ g2 ≥ · · · ≥ gn (where n is the dimension of xt). For k = 1, · · · , n, I define

θk =

(
ϕm

k∏
i=1

gi

) 1
k

.

Then, we can find k such that gk ≥ θk > gk+1 for k < n (or k = n and it must be gn ≥ θn).
Using this notation, the ith element of D, di, is going to be

di =

{
1− θk

gi
for i ≤ k

0 for i > k

Thus, the integer k describes the number of eigenvectors that receive positive weights, while
the remaining n− k receive a zero weight. We can see that all di ∈ [0, 1] and det (I −D) =
Πk

i=1
θk
gi

= ϕm.
We can express the solution for D more succinctly. Following Afrouzi and Yang (2021),
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I adopt the following two matrix operators. For a diagonal matrix D, max (D, θ) replaces
the diagonal elements of D that are smaller than θ with θ. For a symmetric matrix X
whose eigendecomposition is expressed as X = U DU ′, the operator Max (X, θ) is defined
as Max (X, θ) = U max (D, θ)U ′. Using these operators, I can express the optimal I −D as

I −D = θk {Max (G, θk)}−1

Since Wt = U (I −D)U ′, the optimal solution for Wt is expressed as

Wt = θk {Max (U GU ′, θk)}−1

From this, the optimal Σm
t|t is derived as

Σm
t|t = Σt|t−1 + V ar

[
xi,t|t−1

] 1
2 θk

{
Max

(
V ar

[
xi,t|t−1

] 1
2 Γ1 V ar

[
xi,t|t−1

] 1
2 , θk

)}−1

V ar
[
xi,t|t−1

] 1
2

where V ar
[
xi,t|t−1

]
= Σx−Σt|t−1 captures the maximum possible increase in the uncertainty

due to forgetting the previous cognitive states. In summary, the optimal memory system
solves the fixed point problem for Γ1 and Σm

t|t that satisfy the following equations, given the
level of Σt|t−1 (and therefore V ar

[
xi,t|t−1

]
).

Σm
t|t = Σt|t−1 + V ar

[
xi,t|t−1

] 1
2 θk

{
Max

(
V ar

[
xi,t|t−1

] 1
2 Γ1 V ar

[
xi,t|t−1

] 1
2 , θk

)}−1

V ar
[
xi,t|t−1

] 1
2

Γ1 =
(
I − K̃t

)′
Q
(
I − K̃t

)
Furthermore, as summarized by Λ̃t, the optimal memory signal is described as follows.

Λ̃t = V ar
[
xi,t|t−1

] 1
2

(
k∑

i=1

(
1− θk

gi

)
ui u

′
i

)
V ar

[
xi,t|t−1

]− 1
2

where gi is the eigenvalues of V ar
[
xi,t|t−1

] 1
2 Γ1 V ar

[
xi,t|t−1

] 1
2 that are rearranged in a de-

scending order and ui is the corresponding eigenvector. As defined above, k is such that
gk ≥ θk ≥ gk+1.

A.4 A Simpler Approximation

Let’s suppose that the memory variable m̃i,t encodes a linear combination of xi,t|t−1. Thus,
m̃i,t is a scalar random variable of the following form.

m̃i,t = λt d
′
t xi,t|t−1 + ω̃i,t, ω̃i,t ∼ N

(
0, σ2

ω

)
(A.31)

Applying the normalization condition Cov
[
m̃i,t, d

′
t xi,t|t−1

]
= V ar [m̃i,t] again pins down the

variance of memory noise as

σ2
ω = λt(1− λt) d

′
t V ar

[
xi,t|t−1

]
dt
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The scalar memory variable in (A.31) then results in the prior belief of the form (A.13) where
the loading matrix Λ̃t is described as

Λ̃t =
λt

d′t V ar
[
xi,t|t−1

]
dt
V ar

[
xi,t|t−1

]
dt d

′
t, (A.32)

and the variance of memory noise is characterized as Σω = (I−Λ̃t)V ar
[
xi,t|t−1

]
Λ̃′

t as before.
Finally, the mutual information between m̃i,t and xi,t|t−1 is derived as

I (m̃i,t;xi,t|t−1) = I (m̃i,t; d
′
t xi,t|t−1) = h(m̃i,t)− h(m̃i,t|d′t xi,t|t−1) = −1

2
log(1− λt)

Applying the memory constraint (1.10) then pins down λt as

λt = 1− ϕm.

B Special Case: A Single State Variable

This section discusses the optimal cognitive process when the only state variable that matters
for forecasting is zt. This is a special case of the setting discussed in the previous section,
where the state vector is expressed as xt and the news vector provides noisy information
about c′xt. This section assumes instead that the news vector is expressed as

Nt = zt + ν̄t, ν̄t ∼ N
(
0, σ2

ν

)
. (B.33)

B.1 Optimal representation of noisy news

The optimal ni,t is described as

ñi,t = κzt · (zt + ν̄t) + ũi,t

for some positive scalar κzt that remains to be specified, and the idiosyncratic noise ũi,t follows
a Gaussian distribution N (0, σ2

ut). The values of κzt and σ2
ut that satisfy the normalization

assumption (A.2b) and the information constraint (1.7) are derived as below.

κzt =
Σm

z,t|t

Σm
z,t|t + σ2

ν +
ϕn

1−ϕn
(σz + σ2

ν)
(B.34)

σ2
ut = κ2zt

(
ϕn

1− ϕn

)(
σz + σ2

ν

)
(B.35)

where σz ≡ V ar [zt].

B.2 Optimal representation of noisy memory

Likewise, we can express the optimal mi,t as

m̃i,t = λt · zi,t|t−1 + ω̃i,t

for some positive scalar λt that remains to be specified. The idiosyncratic noise ω̃i,t follows a
Gaussian distribution N (0, σ2

ωt). The normalization assumption (A.2b) and the information
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constraint (1.10) pin down the values of λt and σ2
ωt as below.

λt = 1− ϕm (B.36)
σ2
ωt = ϕm (1− ϕm) V ar

[
zi,t|t−1

]
(B.37)

The simplicity of the solution arises because it is not necessary to allocate memory resources
to more than one variable.

C Derivations of βI and βC

DM i’s forecast of zt evolves according to the following linear law of motion.

zi,t|t = (1− λ) (1− κz)µ+ λ (1− κz) zi,t|t−1 + κz zt + κz ν̃t + ũi,t + (1− κz) ω̃i,t

The consensus forecast of zt evolves according to the following linear law of motion.

zt|t = (1− λ) (1− κz)µ+ λ (1− κz) zt|t−1 + κz zt + κz ν̃t (C.38)

I define b as the weight on unconditional prior belief.

b ≡ (1− λ) (1− κz) (C.39)

C.1 Derivations of βI and βC

Derivation of βI

From the regression specification

zt − zi,t|t = αI + βI
(
zi,t|t − zi,t|t−1

)
+ errori,t,

the coefficient βI asymptotically converges to

βI =
Cov

[
zt − zi,t|t, zi,t|t − zi,t|t−1

]
V ar

[
zi,t|t − zi,t|t−1

]
We can see that

Cov
[
zt − zi,t|t, zi,t|t − zi,t|t−1

]
= −Cov

[
zt − zi,t|t, zi,t|t−1

]
= −b V ar

[
zi,t|t−1

]
The first equality holds because Cov

[
zt − zi,t|t, zi,t|t

]
= 0. The second equality holds because

E
[
zi,t|t

∣∣Mi,t

]
= b µ+ (1− b) zi,t|t−1. We can also see that

V ar
[
zi,t|t − zi,t|t−1

]
=
(
ρ−2 − 2 (1− b) + 1

)
V ar

[
zi,t|t−1

]
where I use V ar

[
zi,t|t−1

]
= ρ2 V ar

[
zi,t|t

]
. Combining the two derivations, we get

βI = − b

2 b+ ρ−2 − 1
(C.40)
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Derivation of βC

Rearranging terms, we can express the consensus forecast’s error as follows.

zt − zt|t =
1− κz
κz

(
zt|t − zt|t−1 + (1− λ)

(
zt|t−1 − µ

))
− ν̃t

From the regression specification

zt − zt|t = αC + βC
(
zt|t − zt|t−1

)
+ errort,

the coefficient βC asymptotically converges to

βC =
Cov

[
zt − zt|t, zt|t − zt|t−1

]
V ar

[
zt|t − zt|t−1

]
Therefore, we can see that

βC =
1− κz
κz

(
1 + (1− λ)

Cov
[
zt|t−1, zt|t − zt|t−1

]
V ar

[
zt|t − zt|t−1

] )
− κz σ

2
ν

V ar
[
zt|t − zt|t−1

]
It remains to derive expressions for Cov

[
zt|t−1, zt|t − zt|t−1

]
and V ar

[
zt|t − zt|t−1

]
.

Note that

(1− λ (1− κz) ρL) zt|t = κz (zt + ν̃t)

⇔ zt|t =
κz

1− λ (1− κz) ρL
(zt + ν̃t)

Therefore, it is straightforward to see that

Cov
[
zt, zt|t

]
=

κz
1− λ (1− κz) ρ2

V ar [zt]

We can also show that

V ar
[
zt|t
]
= V ar

[
κz

1− λ (1− κz) ρL

1

1− ρL
ϵt +

κz
1− λ (1− κz) ρL

ν̃t

]
=

[
1 + λ (1− κz) ρ

2

1− λ (1− κz) ρ2
κ2z

1− (λ (1− κz) ρ)
2

σ2
ϵ

1− ρ2

]
+

[
κ2z

1− (λ (1− κz) ρ)
2 σ

2
ν

]
=

κ2z
1− (λ (1− κz) ρ)

2

{
1 + λ (1− κz) ρ

2

1− λ (1− κz) ρ2
V ar [zt] + σ2

ν

}
And finally,

Cov
[
zt|t, zt|t−1

]
= λ (1− κz) ρ

2 V ar
[
zt|t
]
+ κz ρ

2Cov
[
zt, zt|t

]
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Let’s consider the case σ2
ν → 0. Then,

Cov
[
zt, zt|t

]
=

1

k

1− (λ (1− κz) ρ)
2

1 + λ (1− κz) ρ2
V ar

[
zt|t
]

Cov
[
zt|t, zt|t−1

]
=

[
κz ρ

2 + κz ρ
2 1

k

1− (λ (1− κz) ρ)
2

1 + λ (1− κz) ρ2

]
V ar

[
zt|t
]

=
ρ2 + λ (1− κz) ρ

2

1 + λ (1− κz) ρ2
V ar

[
zt|t
]
≡ c̄ V ar

[
zt|t
]

Then,

Cov
[
zt|t−1, zt|t − zt|t−1

]
V ar

[
zt|t − zt|t−1

] =
(c̄− ρ2) V ar

[
zt|t
]

(1 + ρ2 − 2 c̄)V ar
[
zt|t
] = c̄− ρ2

1 + ρ2 − 2 c̄
=

λ (1− κz) ρ
2

1− λ (1− κz) ρ2

Finally, we can derive that βC is expressed as follows.

βC =
1− κz
κz

(
1 + (1− λ)

λ (1− κz) ρ
2

1− λ (1− κz) ρ2

)
(C.41)

C.2 Steady-state Uncertainty

I denote the steady state uncertainty of zt as Σ−1 ≡ V ar [zt|mi,t−1, ni,t−1], Σm ≡ V ar [zt|mi,t],
and Σ ≡ V ar [zt|mi,t, ni,t], which satisfy the following stationary relationship.

Σ−1 = ρ2Σ + σ2
ϵ (C.42a)

Σm = (1− λ)σ2
z + λΣ−1 (C.42b)

(Σ)−1 = (Σm)−1 +
(
σ̃2
u

)−1 (C.42c)

where σ2
z is the unconditional variance of z, which equals σ2

ϵ

1−ρ2
, and σ̃2

u = ϕn

1−ϕn
σ2
z captures

the noisy news.
The steady-state κz and b are

κz =
Σm

Σm + σ̃2
u

(C.43)

b = (1− λ)
σ̃2
u

Σm + σ̃2
u

(C.44)

And we have shown earlier that λ = 1− ϕm.

C.3 Comparative Statics

Comparative Statics for the Uncertainty

Equations (C.42) implicitly impose the following relation.

F
(
Σ; σ̃2

u, λ
)
= (Σm)−1 +

(
σ̃2
u

)−1 − (Σ)−1

=
(
(1− λ)σ2

z + λ
(
ρ2Σ + σ2

ϵ

))−1
+
(
σ̃2
u

)−1 − (Σ)−1 = 0 (C.45)

63



Then, the derivatives of F (Σ; σ̃2
u, λ) = 0 with respect to σ̃2

u and λ are

∂F

∂σ̃2
u

= − (Σm)−2 λ ρ2
∂Σ

∂σ̃2
u

−
(
σ̃2
u

)−2
+ (Σ)−2 ∂Σ

∂σ̃2
u

= 0

∂F

∂λ
= − (Σm)−2

(
−σ2

z + ρ2Σ + σ2
ϵ + λ ρ2

∂Σ

∂λ

)
+ (Σ)−2 ∂Σ

∂λ
= 0

Rearranging yields the derivatives of σ with respect to σ̃2
u and λ.

∂Σ

∂σ̃2
u

=

((
Σm

Σ

)2

− λ ρ2

)−1(
Σm

σ̃2
u

)2

> 0

∂Σ

∂λ
= −

((
Σm

Σ

)2

− λ ρ2

)−1 (
σ2
z − Σ−1

)
= −

((
Σm

σ

)2

− λ ρ2

)−1
Σm

1− λ

(
1− Σ−1

Σm

)
< 0

Additionally, the derivative of Σm with respect to σ̃2
u is

∂Σm

∂σ̃2
u

= λ ρ2
∂Σ

∂σ̃2
u

= λ ρ2

((
Σm

Σ

)2

− λ ρ2

)−1(
Σm

σ̃2
u

)2

> 0

and with respect to λ:

∂Σm

∂λ
= −ρ2

(
σ2
z − Σ

)
+ λ ρ2

∂Σ

∂λ

= − Σm

1− λ

(
1− Σ−1

Σm

){
1 +

λ ρ2(
Σm

Σ

)2 − λρ2

}

= − Σm

1− λ

1− Σ−1

Σm

1− λρ2
(

Σ
Σm

)2 < 0

Note that 1 > Σ−1

Σm > Σ
Σm > λρ2

(
Σ
Σm

)2
> 0, making the last term be between 0 and 1.

Comparative Statics for κz and b

Now we turn to the comparative statistics of κz and b. First, the derivative of b with respect
to σ̃2

u is computed as:

∂b

∂σ̃2
u

= (1− λ)
1

(Σm + σ̃2
u)

2

{(
Σm + σ̃2

u

)
− σ̃2

u

(
∂Σm

∂σ̃2
u

+ 1

)}
= (1− λ)

Σm

(Σm + σ̃2
u)

2

{
1− λ ρ2

Σm

Σ
− 1(

Σm

Σ

)2 − λρ2

}
> 0
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We can easily see that
Σm

Σ
−1

(Σm

Σ )
2
−λρ2

∈ (0, 1), which makes the term inside the bracket be

positive. Next, the derivative of b with respect to λ is derived as:

∂b

∂λ
= − σ̃2

u

Σm + σ̃2
u

− (1− λ)
σ̃2
u

(Σm + σ̃2
u)

2

∂Σm

∂λ
= − σ̃2

u

Σm + σ̃2
u

(
1 +

1− λ

Σm + σ̃2
u

∂Σm

∂λ

)
= − σ̃2

u

Σm + σ̃2
u

(
1− Σm

Σm + σ̃2
u

1− Σ−1

Σm

1− λρ2
(

Σ
Σm

)2
)
< 0

In addition, the derivative of κz with respect to σ̃2
u is:

∂κz
∂σ̃2

u

= − Σm

(Σm + σ̃2
u)

2

{
1− ∂Σm

∂σ̃2
u

σ̃2
u

Σm

}
= − Σm

(Σm + σ̃2
u)

2

{
1− λρ2

Σm

Σ
− 1(

Σm

Σ

)2 − λρ2

}
< 0

Finally, the derivative of κz with respect to λ:

∂κz
∂λ

=
σ̃2
u

(Σm + σ̃2
u)

2

∂Σm

∂λ
< 0

Comparative Statics for βI

Now we combine the above comparative statistics to analyze how βI and βC change with
ϕn and ϕm. Note first from (C.40) that ϕn and ϕm affect βI through the bias term b. The
derivative of βI with respect to b is:

∂βI
∂b

= −
(
2 b+ ρ−2 − 1

)−2 (
ρ2 − 1

)
< 0

Therefore, we get that

∂βI
∂ϕm

=
∂βI
∂b

∂b

∂ϕm

= −∂βI
∂b

∂βI
∂λ

< 0 (C.46a)

∂βI
∂ϕn

=
∂βI
∂b

∂b

∂σ̃2
u

∂σ̃2
u

∂ϕn

< 0 (C.46b)

Comparative Statics for βC

Next, we analyze the comparative statics for βC . The derivative of βC with respect to ϕn is
straightforward. From (C.41), we can see that βC decreases in κz, and from above we also
know that κz decreases in σ̃2

u. Therefore, we have

∂βC
∂ϕn

=
∂βC
∂κz

∂κz
∂σ̃2

u

∂σ̃2
u

∂ϕn

> 0 (C.47)
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The derivative of βC with respect to ϕm is more involved. We can compute that

∂βC
∂ϕm

= − 1

κ2z

∂κz
∂ϕm

(
1 + (1− λ)

λ (1− κz) ρ
2

1− λ (1− κz) ρ2

)
+

1− κz
κz

∂

∂ϕm

(
1 + (1− λ)

λ (1− κz) ρ
2

1− λ (1− κz) ρ2

)
= − 1

κ2z

∂κz
∂ϕm

(
1 + (1− λ)

λ (1− κz) ρ
2

1− λ (1− κz) ρ2

)
+

1− κz
κz

(1− λ)
∂

∂ϕm

(
λ (1− κz) ρ

2

1− λ (1− κz) ρ2

)
+

1− κz
κz

(
λ (1− κz) ρ

2

1− λ (1− κz) ρ2

)
∂(1− λ)

∂ϕm

= − 1

κ2z

∂κz
∂ϕm︸ ︷︷ ︸

<0

+
1− κz
κz

(1− λ)
∂

∂ϕm

(
λ (1− κz) ρ

2

1− λ (1− κz) ρ2

)
︸ ︷︷ ︸

<0

− 1

κ2z

(
λ (1− κz) ρ

2

1− λ (1− κz) ρ2

)(1− λ)
∂κz
∂ϕm︸︷︷︸
>0

−κz (1− κz)


The last equation holds because ∂(1−λ)

∂ϕm
= 1. Since all the terms except the last one are

negatively contributing to ∂βC

∂ϕm
, we can further see that

∂βC
∂ϕm

< − 1

κ2z

∂κz
∂ϕm

+
1− κz
κz

(
λ (1− κz) ρ

2

1− λ (1− κz) ρ2

)
= −1− κz

κz

(
∂Σm

∂ϕm

− λ (1− κz) ρ
2

1− λ (1− κz) ρ2

)

= −1− κz
κz

(1− κz) ρ
2
(

σ2
z

Σ
− 1
)

1− λ (1− κz)
2 ρ2

− λ (1− κz) ρ
2

1− λ (1− κz) ρ2


= −1− κz

κz

λ (1− κz) ρ
2

1− λ (1− κz) ρ2

{
1

λ

(
σ2
z

Σ
− 1

)
1− λ (1− κz) ρ

2

1− λ (1− κz)
2 ρ2

− 1

}
I would like to show that we can find σ̂2

u such that for any λ, the term inside the bracket is
positive for all σ̃2

u such that σ̃2
u ≤ σ̂2

u and negative otherwise.
First, it is straightforward to see that the term in the bracket is positive for σ̃2

u = 0 (since
Σ → 0 and κz → 1) and negative for σ̃2

u → ∞ (since Σ → σ2
z and κz → 0) for any values of ρ,

σϵ, and λ. Next, we can also see that the term in the bracket is decreasing in σ̃2
u for any given

ρ, σϵ, and λ: σ2
z

Σ
decreases in σ̃2

u and 1−λ(1−κz)ρ2

1−λ(1−κz)
2ρ2

decreases in 1 − κz (and accordingly also
decreases in σ̃2

u). Therefore, there exists a σ̂2
u such that the term in the bracket is positive

for any ρ, σϵ, and λ as long as σ̃2
u ≤ σ̂2

u. In practice, we could find such σ̂2
u by finding σ̃2

u

under which

1

λ

(
σ2
z

Σ
− 1

)
1− λ (1− κz) ρ

2

1− λ (1− κz)
2 ρ2

= 1

for any given ρ, σ2
ϵ and λ. For a given value of ρ and σ2

ϵ , we can define σ̂2
u as the smallest

possible σ̂2
u for all possible λ, which is denoted as σ̂2

u ≡ g (ρ, σϵ). Therefore, we can conclude
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that ∂βC

∂ϕm
< 0 as long as σ̃2

u ≤ g (ρ, σ2
ϵ ). Equivalently, ∂βC

∂ϕm
< 0 as long as ϕn ≤ ϕ̄n ≡ ḡ (ρ, σ2

ϵ ),
where ḡ (ρ, σ2

ϵ ) can be easily defined using the definition σ̃2
u = ϕn

1−ϕn
σ2
z .

D Monetary Model

I describe a textbook model below, but more details can be found in Gali (2008, Chapter 3).

D.1 Household Problem

A representative, infinitely-lived household maximizes the lifetime utility from consumption
and labor.

E0

β∑
t=0

[
C1−σ

t

1− σ
− N1+φ

t

1 + φ

]
where Ct is the quantity of the basket of goods consumed at time t, and Nt is the number
of hours worked. The consumption/savings and labor-supply decisions are subject to the
budget constraint that should be met every period.

PtCt +QtBt ≤ Bt−1 +WtNt + Tt

where Pt is the aggregate price index, Bt is the one-period bond and Qt its price, Wt is the
nominal hourly wage, and finally Tt is a lump-sum income. The household should also be
solvent after all, which is captured by the condition that limT→∞ EtBt ≥ 0.

The first order conditions and their Taylor expansion around the zero-inflation steady
state imply

wt − pt = σ ct + φnt (D.48)

ct = Et ct+1 −
1

σ
(−qt − Et πt+1 + log β) (D.49)

where the lowercase denotes the log of the variable denoted in uppercase.

D.2 Firm Problem

A continuum of firms indexed by i ∈ [0, 1] produces a differentiated goods. The production
function is described as

Yt(i) = AtNt(i)

where At is the level of production technology, assumed to be common to all firms and evolve
exogenously over time.

Each firm reconsiders its price with probability 1 − α, independent of when its price is
readjusted in the past. Thus, at any period, a mass of 1−α firms resets their prices and the
remaining mass of α firms keep their old prices. The aggregate price index is then formed
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according to

Pt =

[
α (Pt−1)

1−η + (1− η)

(∫
P ∗
i,t di

)1−η
] 1

1−η

D.3 Optimal Price Setting

Suppose firm i chooses the price P ∗
i,t in period t. This price maximizes the current market

value of the profits if the firm cannot reoptimize the price forever.

max
Pi,t

Ei,t

[
∞∑
h=0

αhQt,t+h

(
Pi,t Yi,t+h|t −Ψt+h

(
Yi,t+h|t

))]
where α the probability of not resetting prices, Qt,t+h is the stochastic discount factor for
evaluating the future nominal payoffs generated at t+ h, Yi,t+h|t is the output demanded in
period t + h if the price remains the one chosen at time t, and Ψt+h is the (nominal) cost
function at time t+ h. Firm i takes into account that the demand Yi,t+h|t is given as

Yi,t+h|t =

(
Pi,t

Pt+h

)η

Ct+h

where θ is the elasticity of substitution among goods, Pt+k is the aggregate price at time
t+ h and Ct+h is the aggregate consumption at time t+ h.

The first-order condition implies that

Ei,t

[
∞∑
h=0

αhQt,t+hYi,t+h|t
(
P ∗
i,t −Mψt+h

)]
= 0

where M ≡ η
η−1

and ψt+h is the nominal marginal cost at t+h. Dividing by Pt−1 and letting
Πt,t+h ≡ Pt+h

Pt
, we can rewrite the first order condition as

Ei,t

[
∞∑
h=0

αhQt,t+hYi,t+h|t

(
P ∗
i,t

Pt−1

−MMCt+h Πt,t+h

)]
= 0

First-order Taylor expansion around the zero-inflation steady state implies that

p∗i,t − pt−1 = Ei,t

[
(1− αβ)

∞∑
h=0

(αβ)h ((mct+h −mc) + (pt+h − pt−1))

]

= Ei,t

[
∞∑
h=0

(αβ)h {(1− αβ) (mct+h −mc) + πt+h}

]
where mc is the steady state value of mct+h. From this expression, we can see that the
optimal reset price p∗i,t equalsmc over a weighted average of the current and expected nominal
marginal costs.

Note that the marginal cost at t + h does not depend on the quantity firm i supplies.
This is because the marginal product of labor does not depend on quantity, as mpnt = at.
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Thus,

mct+h = wt+h − pt+h −mpnt+h = wt+h − pt+h − at+h

D.4 Equilibrium

Since market clears for all i goods, it follows that

Ct = Yt

which implies ct = yt. And the labor market clears, requiring

Nt =

∫
Nt(i) di

which can be shown to imply nt = yt − at in the first order approximation. Thus, using the
household’s optimality condition,

wt − pt = (σ + φ) yt − φat

Denoting ynt as the efficient level of output, we can show that ynt = 1+φ
σ+φ

at. I define the
output gap as

xt = yt − ynt

Thus, the marginal costs are derived as

mct+h = χxt

where I define χ ≡ σ + φ.

D.5 Firms’ Macroeconomic Expectations

Substituting (4.7), we can see that inflation is determined as

πt = (1− α)

(
ẑt +

αβ

1− αβ
µ̂t

)
Substituting (4.8) and (4.9), we get

πt = (1− α)

{
(κz + κµ) zt +

(
λ(1− κz) +

αβ

1− αβ
λ(1− κµ)

)
µ̂t−1

}
Defining κ̂z = κz+κµ and b̂ = λ(1−κz)+ αβ

1−αβ
λ(1−κµ), we can describe the above expression

as

πt = (1− α)
{
κ̂z zt + b̂ µ̂t−1

}
(D.50)

D.6 Inflation Determination

We can solve for the equilibrium inflation process using a guess-and-verify approach. The
equation (4.6) states that zt is determined by πt and et, and the equation (D.50) states that
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πt is determined by zt and µ̂t−1. Thus, it is straightforward to see that two state variables, et
and µ̂t−1, determine inflation, and the relationship is linear. We guess the following inflation
process.

πt = φe et + φµ µ̂t−1 (D.51)

Combining (4.6), (D.50), and (D.51), we can find the coefficients φe and φµ that verify our
initial guess. They are derived as below.

φe =
δ

1 + δ χ θ
1−θ

+ 1
α

1−κ̂
κ̂

φµ =
1

1 + δ χ θ
1−θ

+ 1
α

1−κ̂
κ̂

1− α

α

b̂

κ̂

where δ ≡ (1−α)(1−αβ)
α

, κ̂z = κz + κµ, and b̂ = λ(1− κz) +
αβ

1−αβ
λ(1− κµ).

D.7 Variability of Inflation

From (D.51), we can see that the variability of inflation is derived as

V ar [πt] = φ2
e V ar [et] + φ2

µ V ar [µ̂t−1]

Therefore, it remains to derive the variability of µ̂t. First, note that from (4.6), zt is also
determined by two state variables.

zt = ϖe et +ϖµ µ̂t−1

where ϖe and ϖµ are defined as

ϖe = (1− (1− αβ)χs)φe + (1− αβ)

ϖµ = (1− (1− αβ)χs)φµ

Using this expression, we can then describe the law of motion of µ̂t as

µ̂t = (λ (1− κµ) + κµϖµ)︸ ︷︷ ︸
≡ρµ

µ̂t−1 + κµϖe et

From this, we can see that

V ar [µ̂t] =
(κµϖe)

2

1− ρ2µ
V ar [et]

Therefore, the variability of inflation is derived as

V ar [πt] =

(
φ2
e +

(κµϖe)
2

1− ρ2µ

)
V ar [et]
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E A Stationary Relationship

The law of motion of the posterior mean for xt is derived as follows by combining equations
(A.13) and (A.17).

xi,t|t =
(
I − K̃t

)(
I − Λ̃t

)
µx +

(
I − K̃t

)
Λ̃tAxi,t−1|t−1 + K̃t xt + ν̃t + noisei,t

where ν̄t captures the common noise in external information sources, and noisei,t is the
idiosyncratic cognitive noise defined as

noisei,t ≡
(
I − K̃t

)
ω̄i,t + ũi,t. (E.52)

The variance of cognitive-noise term is then derived as

V ar [noisei,t] =
(
I − K̃t

)
Σωt

(
I − K̃t

)′
+ Σut.

To further ease the notation burden, I introduce the following matrices

∆t ≡
(
I − K̃t

)(
I − Λ̃t

)
Ât ≡

(
I − K̃t −∆t

)
A

Using these matrices, the posterior mean xi,t|t has the following law of motion

xi,t|t = ∆t µx + Ât xi,t−1|t−1 + K̃t xt + ν̃t + noisei,t. (E.53)

The posterior beliefs converge to a stationary distribution as t → ∞. Thus, the matrices
such as K̃t and Λ̃t, which are functions of the underlying prior and posterior variances, also
converge to constant values, whose limits are denoted as K̃t → K̃ and Λ̃t → Λ̃. After a long
enough learning period, the posterior mean for xt then evolves according to

xi,t|t = ∆µx + Â xi,t−1|t−1 + K̃xt + ν̃t + noisei,t (E.54)

The consensus forecasts xt|t average the individual forecasts xi,t|t−1 across the continuum
of forecaster i in (E.54) at each time t. Thus, xt|t evolves according to

xt|t = ∆µx + Â xt−1|t−1 + K̃xt + ν̃t, (E.55)

The deviation of individual forecasts from the consensus can be derived from subtracting
(E.55) from (E.54). We can see that it has the following law of motion.

xi,t|t − xt|t = Â
(
xi,t−1|t−1 − xt−1|t−1

)
+ noisei,t.

Thus, the gap is persistent and is affected by a new draw of cognitive noise. Iterating the
above equation backward yields that

xi,t|t − xt|t =
∞∑
j=0

Âj noisei,t−j ≡ NoiseHistoryi,t (E.56)

That is, xi,t|t − xt|t captures the accumulated cognitive noise in the past. I compute the
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stationary variation of NoiseHistoryi,t from the following Riccati equation

V ar [NoiseHistoryi,t] = Â V ar [NoiseHistoryi,t] Â
′ + V ar [noisei,t] ,

which can be computed from the stationary level of V ar [noisei,t].

The law of iterated expectations does not hold. Rearranging (E.54) yields the fol-
lowing expression

xi,t|t = xi,t|t−1 + K̃
(
xt − xi,t|t−1

)
−∆

(
xi,t|t−1 − µx

)
+ ν̃t + noisei,t, (E.57)

from which one could see that

E
[
xi,t|t

∣∣ m̃i,t−1, ñi,t−1

]
= (I −∆)xi,t|t−1 +∆µx. (E.58)

That is, the law of iterated expectations does not hold as long as ∆ is not zero. From the
definition of this matrix, we can conclude that if the matrix Λ̃t is not an identity matrix, ∆
will not be a zero matrix. Thus, memory frictions prevent the information set from being
nested.

E.1 Perceived Variations of Forecasts

We derive the perceived variations of the posterior means that are consistent with DM’s prior
belief about xt ∼ N (µx, Σx). Given the stationary values of Σt|t, the variations of xi,t|t, its
covariance with xt, and its auto-covariance should satisfy the following identities.

V ar
[
xi,t|t

]
= Σx − Σt|t (E.59a)

Cov
[
xi,t|t, xt

]
= V ar

[
xi,t|t

]
(E.59b)

Cov
[
xi,t|t, xi,t−1|t−1

]
= Cov

[
Âxi,t−1|t−1 + K̃Axt, xi,t−1|t−1

]
= Cov

[(
Â+ K̃A

)
xi,t−1|t−1, xi,t−1|t−1

]
= (I −∆)AV ar

[
xi,t|t

]
(E.59c)

where the equation (E.59a) is derived from decomposing the perceived variability of xt into
the (average) variability explained by a given realized cognitive state and the variability of
the posterior mean arising due to the randomness in the cognitive states (i.e., the “Law of
Total Variance”). The equation (E.59b) uses the “Law of Total Covariance” by focusing on
the role of DM’s time-t cognitive state. Finally, the auto-covariance (E.59c) uses the law of
motion of the posterior mean (E.54).

The same set of statistical properties of the consensus forecast is derived below. (E.56).

V ar
[
xt|t
]
= V ar

[
xi,t|t

]
− V ar [NoiseHistoryi,t] (E.60a)

Cov
[
xt|t, xt

]
= Cov

[
xi,t|t, xt

]
(E.60b)

Cov
[
xt|t, xt−1|t−1

]
= Â V ar

[
xt|t
]
+ K̃ACov

[
xt, xt|t

]
(E.60c)

The derivations are based on its law of motion (E.55) and its relationship with the individual
forecasts.
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Finally, the variations related to the gap in views xi,t|t − xt|t are derived as below.

V ar
[
xi,t|t − xt|t

]
= V ar [NoiseHistoryi,t] (E.61a)

Cov
[
xi,t|t − xt|t, xi,t−1|t−1 − xt−1|t−1

]
= Â V ar

[
xi,t|t − xt|t

]
(E.61b)

Forecast errors and revisions. I furthermore discuss the statistical properties of forecast
errors and revisions. To reduce the notation burden, I first define the following terms.

errori,t = xt − xi,t|t

revisioni,t = xi,t|t − xi,t|t−1

Again, I denote the average errors and forecasts as errort and revisiont, which are averages
of errori,t and revisioni,t (across the continuum of forecaster i) at each forecasting period t.

At the individual-level, the covariance between forecast errors and revisions is derived as
below.

Cov [errori,t, revisioni,t] = −Cov
[
errori,t, xi,t|t−1

]
(E.62)

= −∆V ar
[
xi,t|t−1

]
(E.63)

where the first equality holds because an efficient use of time-t information requires the
covariance between errori,t and xi,t|t be a zero matrix. The second equality uses the re-
lationship (E.58). Using the definition of revisioni,t, the variation of forecast revisions is
derived as

V ar [revisioni,t] = V ar
[
xi,t|t

]
+ V ar

[
xi,t|t−1

]
− Cov

[
xi,t|t, xi,t|t−1

]
− Cov

[
xi,t|t−1, xi,t|t

]
.

All the terms are already derived in the equations (E.59).
To compute the above relationship of the consensus forecast, it is useful to rearrange

terms in the law of motion (E.55 the following way.

K̃
(
xt − xt|t

)
=
(
I − K̃

) (
xt|t − xt|t−1

)
+∆

(
xt|t−1 − µx

)
+ ν̃t.

Thus,

K̃ Cov [errort, revisiont]

=
(
I − K̃

)
V ar [revisiont] + ∆Cov

[
xt|t−1, revisiont

]
− Cov

[
ν̃t, xt|t

]
(E.64)

In our exercise, K̃ is invertible. It remains to derive the variation of revisiont as below.

V ar
[
xt|t − xt|t−1

]
= V ar

[
xt|t
]
+ V ar

[
xt|t−1

]
− Cov

[
xt|t, xt|t−1

]
− Cov

[
xt|t−1, xt|t

]
whose terms again are computed from equations (E.60).

Using column vectors αh and αh+1 to describe the relationship yt+h = α′
h xt = α′

h+1 xt−1,
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I describe the regression coefficients of interests as below.

βC =
Cov [yt+h − Ftyt+h, Ftyt+h − Ft−1yt+h]

Ftyt+h − Ft−1yt+h

(E.65)

=
α′
hCov [errort, revisiont]αh

α′
hV ar [revisiont]αh

(E.66)

βI =
Cov [yt+h − Fi,tyt+h, Fi,tyt+h − Fi,t−1yt+h]

Fi,tyt+h − Fi,t−1yt+h

(E.67)

=
α′
hCov [errorit, revisionit]αh

α′
hV ar [revisionit]αh

(E.68)

βP =
Cov [Fi,tyt+h − Ftyt+h, Fi,t−1yt+h − Ft−1yt+h]

Fi,t−1yt+h − Ft−1yt+h

(E.69)

=
α′
hCov

[
xi,t|t − xt|t, xi,t−1|t−1 − xt−1|t−1

]
αh+1

α′
h+1V ar

[
xi,t−1|t−1 − xt−1|t−1

]
αh+1

(E.70)

E.2 Parameter Uncertainty: Perceived Variations vs. Actual Variability

In the main text, section 3 discusses the possible uncertainty about the parameter value µ.
In this exercise, DM has a correct understanding that the very long-run mean µ is constant
but in uncertain about the exact value. Since the true data-generating process stems from
a fixed µ, the perceived variations derived so far will be different from the actual variability.
To adjust for this different, it is useful to characterize how forecasts are related to this
parameter.

For a given value of µ, the expectations of (E.54) are derived as below.

E
[
xi,t|t

∣∣µ] = ∆µx + Â E
[
xi,t−1|t−1

∣∣µ]+ K̃E [xt|µ]

Thus, the stationary distribution of the forecast depends on the parameter µ in the following
way.

E
[
xi,t|t

∣∣µ] = cons+
(
I − Â

)−1

K̃︸ ︷︷ ︸
≡D

E [xt|µ] (E.71)

where a matrix D is introduced to capture the loading of E
[
xi,t|t

∣∣µ] on E [xt|µ]. Likewise,
we can derive the relationship of errori,t and revisioni,t to E [xt|µ]

E [errori,t|µ] = (I −D)E [xt|µ] (E.72)
E [revisioni,t|µ] = (I − A)DE [xt|µ] (E.73)

Since the statistics of relevance is the variability given that a parameter µ is fixed, the
covariance between forecast errors and revisions is derived as

Cov [errori,t, revisioni,t|µ] = Cov [errori,t, revisioni,t]

− Cov [E [errori,t|µ] , E [revisioni,t|µ]] ,

from the law of total covariance. Using the correction equations (E.72) and (E.73), we can
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derive the covariance as

Cov [errori,t, revisioni,t|µ] = Cov [errori,t, revisioni,t] (E.74)
− (I −D)V ar [E [xt|µ]]D′ (I − A)′ (E.75)

Likewise, the actual variation in forecast revisions is derived as

V ar [revisioni,t|µ] = V ar [revisioni,t]− V ar [E [revisioni,t|µ]]
= V ar [revisioni,t]− (I − A)DV ar [E [xt|µ]]D′ (I − A)′ (E.76)

The adjustments in (E.75) and (E.76) are made because DM treats the parameter as a
random variable (when in fact the data is generated from a fixed parameter). When deriving
the corresponding statistics of the average forecasts, we subtract the same terms.

F Estimation

F.1 Data Source Description

Survey Forecasts Data

The Survey of Professional Forecasters (SPF) began in 1968:Q4 and was taken over by the
Philadelphia Fed in 1990:Q2. Forecasters submit their projections in the middle month of
each quarter. Two major new data releases are available to the survey participants before
submitting their survey. One is the release of the Bureau of Economic Analysis’ advance
report of the national income and product accounts, which contains the first estimate of
GDP and its components for the previous quarter. This is released at the end of the first
month of each quarter. The other is the release of the Bureau of Labor Statistics’ monthly
Employment Situation Report, which is released on the first Friday of each month.

Variable information Both Gross Domestic Product measures are seasonally adjusted,
annual rate. Before 1992, forecasts for Nominal GDP (NGDP) correspond to those for
nominal Gross National Product. Real GDP (RGDP) is chain-weighted; before 1992, it was
fixed-weighted. Before 1981:Q3, forecasts for RGDP are imputed using forecasts for NGDP
and GDP Chain-Weighted Price Index (PGDP) as NGDP/PGDP*100.

Real-time Macroeconomic Data

I use the real-time data set provided by the Philadelphia Fed. The third release of each
variable is used as the “true” realization, which has two uses for my exercise. First, I use
this data to compute the forecast errors. Second, I estimate the parameters related to the
data-generating process, as illustrated in Section 5 of the main text.

Using the real-time data allows us to compare the forecast data to a correct macroe-
conomic variable with a consistent definition and to compute the errors in forecasts more
accurately. Comparing the survey forecasts to the latest release of the data can be mislead-
ing. This is because macroeconomic variables are redefined or reclassified, and the base year
changes for the real variables. Because the real-time data includes the latest data available
at any given vintage, the data released for the same vintage is constructed based on an
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internally consistent variable definition and the same base year. At least for data released
after 1996 (when the chain weighting replaced the fixed-weighing method), the change of
base year doesn’t affect the growth rate of variables.
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