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Abstract

The Phillips curve plays a central role in the macroeconomics literature. However, there

is little consensus on the forcing variable that drives inflation in the model, i.e., on the

appropriate measure of “slack” in the economy. In this work, we systematically assess the

ability of variables commonly used in the literature to (i) predict and (ii) explain inflation

fluctuations over time and across U.S. metropolitan areas. In particular, we exploit a

newly constructed panel dataset with job openings and vacancy filling cost proxies covering

1982-2022. We find that the vacancy-unemployment (V/U) ratio and vacancy filling cost

proxies outperform other slack measures, in particular the unemployment rate. Beveridge

curve shifts—notably, movements in matching efficiency—are responsible for the superior

performance of the V/U ratio over unemployment.
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1 Introduction

The main framework to explain inflation dynamics, the Phillips curve, links inflation to the

amount of unused capacity (or slack) in the economy. The underlying intuition is that, as the

economy heats up, demand tends to exceed capacity, causing upward pressure on prices and

thus higher inflation. As inflation remained remarkably stable throughout successive business

cycles over 1990-2020, many economists considered the Phillips curve to be “dormant,” but

the recent surge in inflation led to a revival of Phillips curve studies, notably on the ability of

a Phillips type framework to account for the ups and downs in inflation in the post-COVID

recovery (e.g., Ball et al., 2022; Benigno and Eggertsson, 2023; Blanchard and Bernanke, 2023).

Since the original paper linking the unemployment rate to (wage) inflation (Phillips, 1958),

a number of theoretical studies have focused on deriving foundations for the Phillips curve

—the aggregate supply (AS) relationship of the macroeconomy. Phelps (1967) and Friedman

(1968) emphasized the concept of the unemployment gap; the deviation of unemployment from

its natural level, a concept later microfounded by the New-Keynesian literature (e.g., Blanchard

and Gaĺı, 2010; Gaĺı, 2015). However, unemployment is by far not the only measure of slack

that has been proposed. Other popular slack candidates include average real marginal cost,

the labor share, the output gap (see, e.g., Gaĺı, 2015), the job-switching rate (Moscarini and

Postel-Vinay, 2017, 2023), and most recently the vacancy–unemployment ratio (Barnichon and

Shapiro, 2022; Ball et al., 2022).

There is currently little consensus on the most appropriate measure of slack, or more specif-

ically on the most appropriate forcing variable in a Phillips curve framework. That is, which

variable can best explain the movements in inflation caused by changes in aggregate demand?

We tackle this question with a dual approach. First, we conduct an out-of-sample forecasting

exercise, which is robust to overfitting issues inherent to in-sample analysis. We assess which

slack measures best predict inflation at one-year horizons. From the interwar period to the up-

surge in inflation of the 1960s, all the way up to the more recent post-COVID inflation surge, a

set of variables consistently provide superior information about future inflation: the vacancy–

unemployment (V/U) ratio and, more generally, proxies for vacancy filling costs—firms’ cost

of filling a job opening.

Second, we aim to assess whether the structural Phillips curve—the causal effect of slack

on inflation—fits the data better using the V/U ratio instead of the traditional unemployment

rate as a measure of slack. OLS estimates again confirm the superior performance of the

V/U ratio over unemployment, though coefficient estimates are likely biased by endogeneity

issues: unobserved inflation expectations, unobserved natural rates, unobserved supply shocks,

and downward bias from countercyclical monetary policy (e.g., McLeay and Tenreyro, 2020;

Barnichon and Mesters, 2020).

To address these endogeneity issues, we take a three-pronged approach. First, we estimate

the model on a narrower measure of inflation, the San Francsico Fed’s “cyclical core” inflation

measure, which is plausibly less contaminated by supply disturbances. Second, we use the

Romer and Romer (2004) monetary shocks as instrumental variables. Third, we exploit Hazell
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et al. (2022)’s insight that cross-sectional information can address (or at least lessen) endogene-

ity biases, and we use a newly assembled panel of V/U data at the Metropolitan Statistical Area

(MSA) level over 1980-2022.The V/U ratio performs well across these three models, explaining

inflation better than the unemployment rate.

The superior performance of the V/U ratio may seem surprising since vacancies and unem-

ployment are highly correlated: the so-called Beveridge curve. In fact, one can conjecture that

the V/U ratio has been ignored by the earlier Phillips curve literature for this very reason. At

times, however, this correlation can deteriorate sharply due to shifts in the Beveridge curve. We

show that these Beveridge curve shifts are responsible for the superior performance of the V/U

ratio in explaining inflation dynamics. The post-COVID outburst in inflation is an example of

such a Beveridge curve shift, and the V/U ratio explains the rise in inflation much better than

the unemployment rate alone.

A simple accounting framework shows how Beveridge curve shifts are related to changes in

matching efficiency—the efficiency with which the labor market matches job openings to job

seekers. These shifts are relatively rare, explaining why a Phillips curve with the V/U ratio

typically performs just as well as a traditional Phillips curve with unemployment. At times

however, matching efficiency can decline markedly—in the 2008-2009 recession, for instance, or

most strikingly in the aftermath of the COVID pandemic– and these drops are associated with

higher inflation.

2 The Phillips curve forcing variable

Our starting point is the Phillips curve, which is a formal statement of the intuition that

an expanding economy will result in a tight labor market where firms compete for workers, see

rising labor costs, and thus raise prices. A standard formulation of the Phillips curve is the

New Keynesian equation:

πt = γEtπt+1 + κxt + νt, (1)

where xt is the relevant measure of “slack,”or more specifically the Phillips curve forcing vari-

able, and νt captures cost-push shocks. The Phillips curve is a central equation in macroeco-

nomics. Despite its importance, however, there is is much uncertainty about which measure of

slack is e most relevant and thus is the forcing variable that best explains inflation.

Economic slack

The most used forcing variables in the literature are proxies for tightness in the labor market,

typically the unemployment rate or unemployment gap (Phillips, 1958). However, a potential

drawback of the unemployment rate is that it ignores workers outside of the labor force.1 To

1If nonparticipants return to the labor force during times of strong economic growth, they could reduce
upward wage and price pressures by increasing the supply of workers available. In this case, the unemployment
rate would overstate inflationary pressures; see Hobijn and Şahin (2021).
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address this limitation, Hornstein et al. (2014) proposed an extended concept of unused labor.

Their Non-Employment Index (NEI) includes potential job seekers outside of the labor force.

More recently, the vacancy–unemployment ratio (or V/U ratio for short) has been proposed

as a proxy for labor market tightness (Barnichon and Shapiro, 2022; Ball et al., 2022)—an idea

going back to Medoff and Abraham (1982). Intuitively, the ratio θt =
Vt

Ut
represents the number

of job vacancies, or demand for labor, relative to the number of unemployed individuals, or

supply of labor. Since the unemployment pool misses job seekers outside the labor force and

misses on-the-job job seekers, Abraham et al. (2020) constructed a generalized V/U ratio—

denoted by θ∗—that replaces unemployment with a measure of effective job searchers St that

takes into account all possible job seekers. Specifically, θ∗t = Vt

St
, where St is a weighted sum

of unemployment, nonparticipants and employed job seekers where each job seeker type is

weighted by its relative average job finding rate.

Marginal hiring costs

Despite the widespread use of these slack measures, the New Keynesian literature has made

clear that the key determinant of inflation is not slack per se, but instead firms’ real marginal

costs. To address this concept, Gali and Gertler (1999) and Gaĺı (2015) proposed using the

share of output going to labor compensation—the labor share—as a proxy for firms’ marginal

costs. While the labor share is straightforward and easy to construct, it measures the average

cost of labor, which need not coincide with the marginal cost of labor. Interestingly, the V/U

ratio has also been proposed in this context, building on the intuition it should proxy for one

key determinant of firms’ marginal labor costs: the cost of finding and hiring an additional

worker.

To see that point more formally, consider a standard model with search frictions (Pissarides,

2000). In that model, a key determinant of firms’ real marginal cost is the vacancy filling cost—

the cost of hiring a marginal worker—(e.g., Krause and Lubik, 2007; Krause et al., 2008),2 which

is given by

χt =
c

qt
where qt ≡

mt

Vt
(2)

where c is the cost of posting a vacancy, Vt the number of vacancies, and qt the vacancy filling

rate—the rate at which firms are able to hire to fill job openings—which is given by the flow

of new matches at instant t (mt) divided by the number of posted vacancies (Vt). Intuitively,

the vacancy filling cost is the vacancy posting cost times the expected duration of that open

vacancy, 1/qt.

In a standard search and matching model (Mortensen and Pissarides, 1994), the vacancy

filling rate can be related to the V/U ratio by means of the matching function. The matching

function relates the flow of new hires to the stocks of vacancies and unemployment. For a

2Technically, the real marginal cost is the sum of two terms: (i) a standard term (unit labor cost) that
depends on the match surplus (productivity) and the surplus splitting rule, and (ii) a correction term capturing
the difference between current vacancy filling costs and next period vacancy filling costs. If these costs follow
approximately an AR(1), the correction term is summarized by the current vacancy filling cost χt; see Krause
et al. (2008) and Gaĺı (2015).
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constant returns-to-scale matching function, the vacancy filling rate is given by qt =
m(Ut,Vt)

Vt
=

qt(θt) where θt =
Vt

Ut
is the vacancy unemployment ratio. If we postulate that the matching

function is Cobb-Douglas, we can write mt = m0tU
σ
t V

1−σ
t with m0t matching efficiency,3 and

simplify the vacancy filling cost as χt = c
θσt
m0t

or

χ̂t = σθ̂t − m̂0t , (3)

where “hats” denote (log) deviations from the steady state. Thus, if matching efficiency is

constant (m̂0t = 0), the (log) V/U ratio θ̂t is a proxy for vacancy fillings costs, confirming the

earlier intuition that the V/U ratio could be a relevant forcing variable for the Phillips curve.

The previous discussion ignores that firms can also hire directly from (i) the pool of employed

workers who may search on the job or (ii) the pool of nonparticipants. With transitions from

employment into employment and nonparticipation into employment, firms’ vacancy filling rate

becomes qt =
mt

Vt
=

puet Ut+peet Et+pne
t Nt

Vt
where puet is the Unemployment-to-Employment transition

rate , peet is the employment-to-employment transition rate, and pnet is the nonparticipation-to-

employment transition rate. Under random matching,4 the number of effective searchers St is

given by

St = Ut +
peet
puet

Et +
pnet
puet

Nt (4)

and the (generalized) vacancy filling cost becomes χ∗
t = c

θ∗t
m0t

with θ∗ = Vt

St
or

χ̂∗
t = σθ̂∗t − m̂0t . (5)

The vacancy filling cost is similar to the V/U ratio, but in this instance to the generalized V/U

ratio proposed by Abraham et al. (2020).

Our last marginal hiring cost proxy comes from Moscarini and Postel-Vinay (2017), who

recently argued that, in a Postel-Vinay and Robin (2002) model, worker’s job-switching rate

can proxy for marginal costs. Different from the traditional random search and matching model

of Mortensen and Pissarides (1994), in Postel-Vinay and Robin (2002) the share of the match

surplus going to labor depends on employed worker’s ability to elicit outside offers. In that

case the ratio
peet
puet

isolates the actual bargaining positions of employed workers. We will thus

also evaluate the performance of the relative job switching rate êet = p̂eet − p̂uet .

Other costs

While the cost of labor can drive up price pressures, it is not the only input of production for

businesses and thus not the only factor determining marginal costs. Raw materials, machines,

and other types of capital infrastructure also play an important role. Similar to labor costs,

3The Cobb-Douglas matching function is used in most macro models with search and matching frictions
(Pissarides, 2000). The matching efficiency term m0t can be seen as the residual of the Cobb-Douglas matching
function. Matching efficiency is akin to the Hicks-neutral productivity term in an aggregate production function.

4Under random matching, the search intensity of a group (relative to the search intensity of the unemployed)
is given by the transition rate into employment for that group relative to the unemployed’s transition rate into
employment.
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increases in the cost of these inputs may force businesses to raise prices for their products to

stay profitable. In this context, we consider an additional measure of slack based on industrial

production: the Federal Reserve Board’s measure of capacity utilization, which measures the

fraction of resources used to produce goods in manufacturing, mining, and electric and gas

utilities.

3 Forecasting inflation

In this section, we assess the forecasting performances of the forcing variables discussed

above. To generate forecasts, we estimate local projections as detailed in Jordà (2005) of the

form

πt+h = γlπt−1 + λxt + ηt+h

where xt is a forcing variable.

We run a horse race between candidate forcing variables to assess which is the most accurate

in forecasting price inflation. We estimate the model using a 10-year rolling window and we

create one-year-ahead (h = 4) forecasts following the last date in each rolling sample.5 For each

measure, we then calculate the forecast errors, which are the differences between their predicted

values of inflation and actual inflation values. We measure overall forecasting performance using

the mean of the squared values of these forecasting errors.

We consider the following variables as measures of slack: the raw unemployment rate (uraw),

the unemployment rate excluding temporary layoffs (u) in order to remove the COVID-specific

spike of 2020, the Non-Employment Index (NEI), the log of the V/U ratio (θ̂t), the level of the

V/U ratio (θt), the log of the generalized V/U ratio of Abraham et al. (2020) (θ̂∗t ), vacancy

filling cost proxies (described in more detail below), the relative job switching rate of Postel-

Vinay and Robin (2002) (êet), capacity utilization as estimated by the Board of Governors of

the Federal Reserve, the unemployment gap and the log of the output gap as estimated from

the Congressional Budget Office (CBO). The main series are depicted in the Appendix.

Data

The underlying data are publicly available except for the long series on worker transition

rates and data on job openings. To construct transition rates between employment, unemploy-

ment and non-participation over 1968-2023, we follow Shimer (2012) and use Current Popu-

lation Survey (CPS) micro data. For the the employment-to-employment transition rate, we

follow Fujita et al. (2024) and obtain a series over 1995-2023. For job openings, we follow

Barnichon (2010) to obtain a vacancy proxy series over 1951-2023. The series is constructed by

splicing the Conference Board print newspaper help-wanted index with the Conference Board

online help-wanted index following the methodology described in Barnichon (2010).6 For the

5Using two-year-ahead forecasts (h = 8) gives similar conclusions.
6See Abraham (1987) for a discussion of the strengths and weaknesses of the Conference Board help-wanted

index based on print newspapers.
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generalized measure of job seekers (St) we use the series constructed by Abraham et al. (2020)

over 1994-2023.

Last, to construct proxies for the recruiting filling cost χt and χ∗
t , we proceed as follows.

For χt, we exploit the fact that, under a constant returns to scale matching function, we have

qt = puet /θt, so that we can obtain a vacancy filling cost proxy from χ̂t = θ̂t − p̂uet over 1967-

2023. For χ∗
t , we proceed similarly by exploiting the fact that qt =

mt

Vt
= St

Vt
puet from (4) and

get a generalized vacancy filling cost proxy from χ̂∗
t = θ̂∗t − p̂uet over 1994-2023. We consider

two sample periods: (i) 1995-2023 where we could study and compare the performances of the

largest number of forcing variables, and (ii) 1960-2023, which allows us to explore forecasting

performance during the previous episode of high inflation—the 1960s and 1970s.

1995-2023

Figure 1a plots the mean-squared forecast errors (MSEs) of the different slack measures in

predicting core personal consumption expenditures (core PCE) price inflation one year ahead

over 2005–2023. The forecast errors are expressed in percentage terms relative to the baseline

performance of the unemployment rate; thus, they can be interpreted as indicating how much

better or worse they perform relative to the unemployment rate.

First, results show that the V/U ratio, and more generally all the vacancy filling cost

proxies (in green), perform better than the other measures. The (log) generalized V/U ratio

does slightly better than the raw V/U ratio; we cannot separate the performances of the level

vs the log of the V/U ratio. Second, the vacancy filling cost proxies outperform the V/U

ratio, and the best performing proxy is the generalized vacancy filling cost χ∗
t . The superior

performances of χ∗
t relative to the V/U ratio indicate that two factors beyond V/U are important

to understand inflation fluctuations: (i) time-varying matching efficiency (m̂0t ̸= 0)—recall

that χt = σθ̂t − m̂0t—and (ii) time-varying hiring rates outside the unemployment pool, as

the generalized vacancy filling cost χ∗
t outperforms the vacancy filling cost χt, which does not

allow for hiring out of employment and nonparticipation. The superior performances of the

vacancy filling cost proxies are all the more remarkable given the larger measurement error in

the transition rates.7

Last, note that none of the traditional measures—the output gap, the unemployment gap,

the non-employment index, or the labor share—outperform the V/U ratio. In addition, neither

the output gap nor the unemployment gap outperform the V/U ratio, even though the gaps are

constructed ex-post by the CBO, taking into account the later behavior of inflation and other

indicators.

To better understand performances over time, Figure 1b plots the 10-year average rolling

MSEs for the different forcing variables over 2005-2023. Two things to notice. First, the reasons

for the superior performances of the vacancy filling cost proxies over the V/U ratios are to be

found during the post-COVID inflation outburst. In particular, their superior performances

7Flow-based measures like χt or χ
∗
t are more noisy than stock-based measures like the V/U ratio. See Figure

A3.
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Figure 1: Forecasting performances, 1995-2023
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0.5

0.6

0.7

0.8

0.9

1

1.1

Out-of-sample relative MSE over 2005-2023 at horizon 4

s
m0

out of SS

(a) Relative MSEs

2010 2011 2012 2013 2014 2015 2016 2017 2018
0

0.5

1

1.5

2

2.5

M
S
E

{
10

-y
r
w
in

d
ow

3̂

3̂$

@̂

@̂$

u
uraw

û

(b) 10-year Rolling MSEs

Notes: Inflation is measured as core PCE. Left panel: the mean-squared errors (MSE) are relative to the MSE

of forecasts with the unemployment rate. θ̂ is the log V/U ratio, θ̂∗ is the generalized log V/U ratio, û is the

log unemployment rate, χ̂ and χ̂∗ the vacancy filling cost proxies, EE the relative job switching rate, NEI is the

Non-Employment Index, LS is the labor share, CapU is the Board of Governors capacity utilization rate, ŷcbo

and u gap are the output gap and unemployment gap estimated by the CBO, uraw is the raw unemployment

rate, u is the unemployment rate excluding temporary layoffs, and û is the log of u. The orange and red

bars decompose the superior performances of θ̂ over û into the contribution of the Beveridge curve shifts due

to movements in (i) the unemployment inflow rate s, (ii) matching efficiency (m0) or (iii) out-of-steady-state

dynamics (“out of SS”).

may stem from a large decline in matching efficiency that raised firms’ hiring costs since 2020,

above what the behavior of the V/U ratio would suggest (see also Bagga et al., 2023). Second,

the differences in performance are tiny during the stable inflation period of 2005-2019. It is

only during the post-COVID recovery—during large inflation fluctuations—that the differences

become noticeable. All forcing variable measures see large deterioration in forecasting perfor-

mance, but the V/U ratios and the vacancy filling cost proxies (χ̂t) do perform markedly better.

This last observation indicates that large movements in inflation are necessary to discriminate

between competing forcing variables. For these reasons, we next evaluate the performances

of the V/U ratios and vacancy filling cost proxies during the large inflation movements of the

1960s and 1970s.

1960-2023

Figure 2 shows the same information as Figure 1 for a restricted set of slack measures over

a longer sample period: 1960-2023, which allows us to include the buildup in inflation of the

late ’60s and the stagflation of the ’70s. The available forcing variables are the log V/U ratio,

the vacancy filling cost proxy χ̂t, and the unemployment rate (in logs or level). Again, we

find that the V/U ratio and the vacancy filling cost proxy outperform unemployment-based

measures, notably by about 30 percent for the unemployment rate. Most importantly, this

exercise confirms that the superior performances of 2022-2023 are not a unique occurrence: θ̂t
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Figure 2: Forecasting performances, 1968-2023
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Notes: Inflation is measured from Core PCE. Left panel: the mean-squared errors (MSE) are relative to the MSE of forecasts with the unemployment

rate. See Figure 1 for variable definitions.

(blue line) systematically outperforms ut (red line) over 1960-2023.8

Longer samples

We find similar results using core CPI (Figure 3a) instead of core PCE over a slightly longer

sample (1958-2023). In addition, we can extend the horse race between the V/U ratio and the

unemployment rate to the period before World War II by incorporating vacancy data avail-

able from the NBER macro history database for “U.S. help-wanted advertising in newspapers,

Metropolitan Life Insurance Company.” Again, we find that the V/U ratio outperforms the

unemployment rate in the interwar period (1919-1940); see Figure 3b.

Figure 3: Longer samples

Out-of-sample relative MSE over 1960-2023 at horizon 4
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Notes: Inflation is measured as core CPI for panel (a) and headline CPI for interwar data in panel (b). See

Figure 1 for variable definitions.

8Again, we note that it is difficult to separate competing forcing variables during periods of stable inflation
(Figure 2b).
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4 Estimating the structural Phillips curve

The discussion has so far focused on finding a measure that can best help forecast inflation,

and we found that the V/U ratio or vacancy filling cost proxies were the most informative to

predict inflation. A related but separate question is whether the superior prediction perfor-

mance of the V/U ratio and vacancy filling cost capture a structural relation between hiring

costs and inflation, or whether these variables simply proxy for other variables that are causing

inflation.

This question is important for two reasons. First, it is hard to put much faith on superior

forecasting performance alone without understanding the underlying reasons for such perfor-

mance. If the V/U ratio only predicts better because it correlates with a variable that causes

inflation over our evaluation sample, there is no guarantee that the superior performances

continue to hold in other samples or in the future. This can be seen as an issue of external

validity. In contrast, establishing that firms’ hiring costs cause inflation is a more stringent

test. Second, while a large literature has focused on consistently estimating a structural macro

Phillips curve—the aggregate supply relationship of the economy—(Mavroeidis et al., 2014;

Barnichon and Mesters, 2020), there is still much uncertainty about the appropriate forcing

variable in such a Phillips curve. In this section, we therefore estimate and compare structural

Phillips curves with different forcing variables: the V/U ratios, vacancy filling costs, and the

unemployment rate.

4.1 Time series evidence

To estimate an aggregate Phillips curve, we use the representation of Hazell et al. (2022).

Specifically, some manipulation of (1) gives

πt = Etπ∞ + κEt

∞∑
j=0

βj (x̂t − Etx̂∞) + ωt , (6)

where x̂t is a forcing variable (in deviation from the steady state), Etx̂∞ is its permanent

component, and the residual captures all other transitory determinants of inflation beyond xt.

If transitory fluctuations in the forcing variable follow an AR(1) with autocorrelation ρ, the

expression simplifies to

πt = Etπ∞ + ψ (x̂t − Etx̂∞) + ωt (7)

where ψ = κ
1−βρ

.

We will thus estimate a Phillips curve of the form (7) with the regression (at quarterly

frequency)

πt = α + βxx̂t−4 + βπEtπ∞ + υt, (8)

where inflation πt is core PCE inflation, Etπ∞ is proxied with long-run inflation expectations

taken from the Livingston survey, and the forcing variable x̂t is either the unemployment rate

ut, the V/U ratio θ̂t, or our vacancy filling cost proxies χ̂t.
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Table 1 reports the estimation results for the 1995-2023 sample period. All odd-numbered

columns report “naive” ordinary least squares (OLS) estimates. Table 2 reports the same set

of results for the 1960-2023 sample period. We z-scored the forcing variables (i..e, normalized

them to have unit variance), so that the coefficients are directly comparable across columns—

each coefficient capturing the effect of a one standard-deviation increase in the forcing variable

on inflation. A larger coefficient thus indicates a larger explanatory power.

Confirming our out-of-sample prediction results, we can see that the V/U ratio outperforms

the unemployment rate: the coefficient on θ̂t is more than 50 percent larger than the coefficient

on ut (column (3) vs column (1) in Table 1) and with a larger p-value. Similar results hold over

1960-2023 with a 22 percent larger coefficient on θ̂t (Table 2, columns (1) and (3)). In fact,

over 1960-2023 the partial R2—the R2 of a regression where we first separated out the effect

of πe
∞—is twice as large using the V/U ratio than using unemployment alone. Further, the

generalized V/U ratio of Abraham et al. (2020) does improve over the baseline V/U ratio, with

a 30 percent higher coefficient than the baseline V/U ratio. The adjusted R2 is also higher than

with V/U—column (7) vs column (3). Last, and as in the out-of-sample forecasting exercise,

the vacancy filling cost proxies do improve performance relative to their V/U ratio counterparts.

The best performance overall is thus obtained with the generalized vacancy filling cost, though

we caution that this is an in-sample result and could be prone to over fitting, especially given

the nonstationary behavior of χ∗
t ; see Figure A2 in Appendix.9

An important caveat of Tables 1 and 2 however is that these OLS coefficient estimates

need not be informative about the structural Phillips curve (6), because OLS estimates could

be biased by endogeneity issues. Indeed, the Phillips curve (6) postulates that inflation is

determined by three main factors—expected future inflation, slack, and supply factors—all

of which lead to endogeneity-related biases. Specifically, these biases reflect that (i) inflation

expectations are measured with error, (ii) the long-run level of the forcing variable (Etx̂∞) is

unobserved and (iii) supply shocks lead to confounding (see e.g., Barnichon and Mesters, 2020).

An additional source of endogeneity bias is that of countercyclical policy: as the central bank

works to mute the effects of aggregate shocks on inflation, the OLS estimate of the slope of the

Phillips curve will be downward biased (McLeay and Tenreyro, 2020).

To address these endogeneity issues, we run three exercises. First, we estimate the Phillips

curve on a narrower measure of inflation, the San Francisco Fed’s “cyclical core PCE inflation”

measure (Shapiro (2020)). This measure isolates those categories within the PCE price index

that move systematically with the unemployment rate and are plausibly less contaminated by

supply disturbances. This approach allows us to alleviate some of the endogeneity issues in the

most recent sample period. Second, we use the Romer and Romer (2004) monetary shocks as

instrumental variables in the Phillips curve regression, following Barnichon and Mesters (2020).

While this approach will in principle address all endogeneity issues, the instrument is too weak

in the post 1995 period—monetary shocks are small and rare during the Great Moderation (e.g.,

Ramey, 2016)—and can only be used over our longer sample. Third, we turn to MSA-level

9In the post-COVID recovery, the χ∗
t reached record highs, driven by a low relative employment-to-

employment transition rate (which drives θ∗t higher than θt) and a low matching efficiency.
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data in order to estimate MSA-level Phillips curves, building on Hazell et al. (2022)’s insight

that cross-sectional information makes it possible to address (or at least substantially lessen)

these endogeneity biases.

Evidence using cyclical core PCE inflation

The San Francisco Fed cyclical core inflation measure is “trained” on data up to 2007,

meaning each category (e.g., transportation services) is placed in the “cyclical” group based

on its relationship with the unemployment rate between 1988 and 2007. For this reason, we

estimate the Phillips curve on the cyclical inflation series between 2005 and 2023 so as to

avoid any mechanical in-sample relationship. The results are shown in the even-numbered

columns of Table 1. The coefficients are all larger in magnitude, and the fit of all models

improves substantially. Again, θ̂t and θ̂
∗
t perform better than the unemployment rate, with the

corresponding vacancy filling cost proxies performing even better.

Using monetary shocks as instrumental variables

The odd-numbered columns of Table 2 report the coefficients estimated using lags of mon-

etary shocks as instrumental variables. The coefficients are bigger than using OLS—in line

with a downward bias coming from supply shocks or systematic monetary policy—though the

coefficients are now roughly of similar magnitudes: All forcing variables perform similarly. One

reason could be that the instrumental variable (IV) estimator uses only a small share of the

variation in the forcing variable—the fraction explained by monetary shocks—and there is no

longer enough variation to discriminate among competing forcing variables. This can also be

seen in the much larger standard errors. To discriminate among competing forcing variables and

address the endogeneity issues, we will now exploit additional variation by estimating Phillips

curves at the U.S. metropolitan level.

4.2 Evidence from U.S. Metropolitan Statistical Areas

Building on McLeay and Tenreyro (2020) and Hazell et al. (2022), we consider an MSA-level

version of (7) with

πit = Etπi∞ + ψ (x̂it − Etx̂i∞) + ωit . (9)

We exploit a new panel with information on labor market tightness over 17 MSAs between

1982 and 2022, estimating a panel regression of the form:

πi,t = ψx̂i,t−4 + δt + αi0 + αi1t+ βXi,t−4 + υit, (10)

at the quarterly frequency where inflation, πi,t, is measured as the four-quarter change in the

core CPI in MSA i. Adding a cross-sectional dimension offers a number of advantages: (i) it

allows for the inclusion of time fixed effects (δt) which control for time-specific factors common

to all MSAs, such as unobserved inflation expectations (πe
t ), monetary policy, and global supply
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shocks; (ii) it includes MSA level fixed effects (αi0), and MSA-specific time trends (αi1t) which

control for unobserved natural MSA-level slack; and (iii) it considerably increases the effective

sample size providing more variation in inflation and labor market slack. This is especially

important to distinguish between competing labor market slack measures when differences are

hard to detect. The vector Xit includes time-varying MSA-specific control variables, including

lagged values of inflation and the relative price of goods and services.

Specification (10) alleviates many of the endogeneity issues discussed above. First, the time

fixed effects control for movements in aggregate inflation expectations, movements in long-

run marginal costs, aggregate supply shocks, and counter-cyclical monetary policy. Second, the

inclusion of MSA fixed effects and MSA-specific linear trends allows for MSA-specific deviations

of Etπi,∞ and Etx̂i,∞ from their aggregate counterparts as long as they follow a linear trend.10

Data construction

Our panel includes MSA-level data on unemployment, CPI inflation, and job openings be-

tween 1982 and 2022 for 17 MSAs. Unemployment data at the MSA level are available from the

Bureau of Labor Statistics (BLS) Local Area Unemployment Statitics (LAUS), however, only

back to 1990. To extend the sample back to 1982, we construct the MSA-level unemployment

rate from CPS micro data, adjusting for the MSA redefinition in October 1985. Vacancy data

are not readily available at the MSA level. However, three separate sources of information can

be used to build a consistent time series for job openings at the MSA level over 1982-2022.

A first measure of vacancy postings is the Conference Board’s Help-Wanted Index (HWI)

available over 1951-2008. The HWI measures the number of help-wanted advertisements in 51

major newspapers. Since each newspaper advertises for the local job market, the Conference

Board has also constructed an MSA-level HWI index over 1951-2008. Starting in the mid-

1990s however, this “print” measure of vacancy postings became increasingly unrepresentative

as advertising over the internet became more prevalent. A second measure of vacancy postings

is online help-wanted advertising, which was published by the Conference Board spanning 2005-

2010.

Building on Barnichon (2010), we combine these two series—“print” and “online” job

advertising—to create a help-wanted index at the MSA level. A key variable in this exer-

cise is the share of newspaper help-wanted advertising in total advertising. Since this print

share is not directly observable, we model the development of online job advertising at each

MSA level as the diffusion of a new technology —online job posting and job search—with a

Mixed Information Source Model, which has been shown to successfully capture the diffusion

of the internet in the U.S. population (e.g., Geroski, 2000). The appendix describes our data

construction procedure in more details. Finally, our third source of vacancy data is from The

Burning Glass Institute, which spans 2010 to 2022.

10This is an extension of McLeay and Tenreyro (2020) who posit that MSA-level deviations from aggregate
inflation expectations are constant and can be controlled by region fixed effects. Our specification allows for
time-varying Etπit+∞ and Etx̂it+∞ as long as they deviate “slowly” from their aggregate counterparts.
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Results

Results of the MSA-level Phillips curve estimation are shown in Table 3, where we consider

two forcing variables—the unemployment rate and the V/U ratio.11 Estimates using the un-

employment rate as the slack measure are shown in columns 1 and 2, while estimates using

the log of the V/U ratio, θ̂, are shown in columns 3 and 4. Columns 5 and 6 report estimates

with both the unemployment rate and the V/U ratio. We report models with no time or MSA

fixed effects (columns 1,3, and 5) and including time and MSA fixed effects (columns 2, 4, and

6). Both forcing variables are normalized to a unit standard deviation for comparability. The

inclusion of time and MSA fixed effects removes a great deal of upward bias on the unemploy-

ment rate and downward bias on θ̂. Both measures of slack are statistically significant, but

again the coefficient on θ̂ is about 30 percent larger, with larger t-statistics, and the regression

R2 is higher with the V/U ratio as the forcing variable. Confirming our time series evidence,

the MSA variation supports the V/U ratio as the better forcing variable over the unemploy-

ment rate. In fact, columns 5 and 6 show that the V/U ratio provides additional explanatory

power over and above the unemployment rate. This indicates that the vacancy rate is providing

additional information about inflation, which we expound on in the next section.

5 Phillips meets Beveridge

Based on our time series and MSA-level results, we conclude that the most successful spec-

ification for the Phillips curve is one with the V/U ratio (θ̂t) or vacancy filling costs (χ̂t) as the

forcing variable. Notably, we find that θ̂t consistently outperforms the unemployment rate—

the original forcing variable in the Phillips equation. This improvement can seem surprising in

light of a well-known empirical regularity called the Beveridge curve: the existence of a tight

relationship between vacancy postings and unemployment.

As illustrated in Figure 4, vacancy posting and unemployment rates comove negatively, and

are highly correlated with a correlation of -.89 over the 1960-2023 period. An intriguing follow-

up question is then the following: what additional information does the V/U ratio provide

beyond the unemployment rate alone? To shed light on this issue, we dissect the theoretical

underpinnings of the Beveridge curve—that is, the reasons underlying the high (but not perfect)

correlation between unemployment and job openings. We will see that our results point to an

important yet so far overlooked determinant of inflation: shifts in the Beveridge curve and,

more specifically, changes in matching efficiency.

5.1 The Beveridge curve

To help understand the emergence of a Beveridge curve as well as the reasons behind its

shifts, we consider a simple stock-flow accounting framework (e.g., Shimer, 2012) augmented

with an aggregate matching function (e.g., Petrongolo and Pissarides, 2001).

11The sample sizes at the MSA level are too small to construct the worker transition rates needed (here puet )
to recover the corresponding vacancy filling cost proxy.
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Figure 4: The Beveridge curve
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Steady-state unemployment

For ease of presentation, we consider the simpler case without on-the-job search and with

constant labor force participation. In that case, the law of motion for unemployment is given

by

ut+1 = st(1− ut)− ftut + ut , (11)

where ut is the unemployment rate, ft the unemployment outflow probability, and st the un-

employment inflow probability.

The steady-state unemployment rate is then defined as the “flow-consistent” unemploy-

ment rate—the unemployment rate that would ultimately prevail if the transition probabilities

remained forever constant at their time-t values, ft and st. In the U.S. labor market, the un-

employment outflow probability is much larger than the unemployment inflow probability (by

a factor of 10 or more), so that the steady-state unemployment can be approximated with

u∗t ≃
st
ft

(12)

and we can rewrite unemployment’s law of motion as

ut+1 = ftu
∗
t + (1− ft)ut . (13)

The unemployment rate converges geometrically to its steady state at a rate 1− ft, i.e., with a

half-life of −ln(2)
ln(1−ft)

or about two months for the US labor market with f ≈ 0.3.12 As argued by

Shimer (2012), these large transition probabilities imply that the steady-state unemployment

12We measure ft and st from short-term unemployment (see Shimer, 2012); see the Appendix for details.
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rate provides a good approximation of the unemployment rate and ut ≈ u∗t .

The shifting Beveridge curve

Using a Cobb-Douglas matching function, we can relate the flow of new hires to the stocks

of vacancies and unemployment with mt = m0tU
σ
t V

1−σ
t . We obtain a very simple expression

for the Beveridge curve with ut =
st

m0,tθ
1−σ
t

or

vt = δtu
−σ
1−σ

t where δt =

Å
st
m0t

ã 1
1−σ

(14)

where vt is the number of vacancies relative to the size of the labor force. Expression (14) is a

Beveridge curve: a log-log relationship between unemployment and vacancies, consistent with

Figure 4.

Since out-of-steady state dynamics can play a role in times of large movements in unem-

ployment, we generalize (14) and allow for out-of-steady state dynamics by taking a first-order

approximation of unemployment around its steady state (Ahn and Crane, 2020) to obtain

v̂t = − σ

1− σ
ût + δ̂t where δ̂t =

1

1− σ
ŝt −

1

1− σ
m̂0t −

1

f(1− σ)
∆ût+1, (15)

where δ̂t captures shifts in the Beveridge curve and ∆ût+1 = ût+1 − ût.
13

Expression (15) highlights two important points. First, without shifts in the Beveridge

curve, the V/U ratio and the (log) unemployment rate should provide the same information

about future inflation. With δ̂t = 0, we have θ̂t = − 1
1−σ

ût, and the V/U ratio and (log)

unemployment (ût) are perfectly collinear, and a horse race between θ̂t and ût should be in-

determinate.14 In other words, a finding that the V/U ratio provides superior information

about future inflation shows that Beveridge curve shifts are central to understanding inflation

fluctuations—Phillips meets Beveridge.

Second, the Beveridge curve can shift for different reasons: (i) movements in the unemploy-

ment inflow rate (ŝt), (ii) movements in matching efficiency (m̂0t), and (iii) out-of-steady state

dynamics ∆ût+1 ̸= 0. Out-of-steady state dynamics correspond to the familiar “looping” of

the Beveridge curve caused by the lagging response of unemployment to changes in vacancy

postings (e.g., Blanchard and Diamond, 1989).

To measure the Beveridge curve shifts (δ̂t), we run the regression θ̂t = βuût + et and take δ̂t

as the regression residual. Similarly, to measure m̂0t—movements in matching efficiency—we

run the regression

θ̂t = βuût + βsŝt + βo∆ût+1 + et , (16)

13Combine the matching function with unemployment’s law of motion to get vt =
Ä
st(1−ut−∆ut+1

m0tuσ
t

ä 1
1−σ

and

take a first-order approximation with (ut, st, ft,∆ut+1) around (s̄, f̄ , s̄, f̄ , 0).
14In fact, it would likely favor the unemployment rate since the V/U ratio is more prone to measurement

error given that job openings are only measured through a proxy from newspaper advertising.
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and we take m̂0t as the regression residual. See Figure A1 in the Appendix for a plot of our

estimated matching efficiency series.

Figure 5 plots the time series for Beveridge curve shifts (in ppt of (log) vacancy rate) de-

composed into the contribution of the unemployment inflow rate, out-of-steady-state dynamics

and matching efficiency. While out-of-steady-state dynamics only play a small role, we can

see that both the unemployment rate and matching efficiency lead to substantial shifts in the

Beveridge curve. Most recently, these two forces partially compensated each other, with a lower

job separation rate shifting the Beveridge curve inward and a deteriorating matching efficiency

shifting the Beveridge curve outwards.

Figure 5: Beveridge curve shifts and matching efficiency
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Notes: The Beveridge curve is estimated over 1951-2007. The blue line (Beveridge curve shifts) is the sum of

the dashed green line (unemployment inflow rate), the dashed black line (out of steady state dynamics) and the

red line (matching efficiency movements).

A number of factors can generate aggregate movements in matching efficiency: changes in

workers’ search intensity, changes in firms’ recruiting intensity (Davis et al., 2013), changes

in the composition of the unemployment pool (Barnichon and Figura (2015)), or changes in

dispersion across labor markets (Barnichon and Figura (2015)) or mismatch (Şahin et al.,

2014). While the pre-2007 cyclical pattern of matching efficiency has been attributed to changes

in the composition of the unemployment pool —notably the share of long-term unemployed

(see Barnichon and Figura, 2015)15, matching efficiency has declined markedly since the end

15The long-term unemployed have a lower job finding rate than the short-term unemployed. In the early
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of the financial crisis. The phenomenon worsened following COVID and the so-called Great

Resignation (e.g., Barlevy et al., 2024). Overall however, much remains to be learned about

the determinants of matching efficiency, and an important lesson from our study is that the

behavior of matching efficiency is an important topic that extends beyond labor market studies:

it has direct implications for our understanding of inflation, as we discuss next.

5.2 Beveridge curve shifts and inflation

To better understand how shifts in the Beveridge curve are important for inflation fluctua-

tions, consider our baseline Phillips curve with V/U as the forcing variable:

πt = Etπ∞ + κθ̂t + et . (17)

From the Beveridge curve decomposition (16), we can split the effect of the V/U ratio on

inflation into two components: (i) movements along the Beveridge curve, and (ii) shifts in the

Beveridge curve. Indeed, from (15) with θ̂ = v̂t − ût and ignoring the small out-of-steady state

dynamics for ease of exposition, we get

θ̂t = − 1

1− σ
ût︸ ︷︷ ︸

Mvts along BC

+
1

1− σ
ŝt −

1

1− σ
m̂0t︸ ︷︷ ︸

Shifts in BC

, (18)

so that the Phillips curve becomes

πt = Etπ∞ − κ

1− σ
ût︸ ︷︷ ︸

Mvts along BC

+
κ

1− σ
ŝt −

κ

1− σ
m̂0t︸ ︷︷ ︸

Shifts in BC

+ et . (19)

Expression (19) shows that the superior performance of the V/U ratio over unemployment

comes from the shifts in the Beveridge curve.

Moreover, since m̂0t is orthogonal to ŝt by construction, we can separate the roles of the

separation rate and matching efficiency in explaining inflation. Specifically, from (18) we can se-

quentially turn off a shifter of the Beveridge curve—the separation rate or matching efficiency—

and study the performance of a counterfactual V/U ratio under either (i) a constant separation

rate (ŝt = 0), or (ii) a constant matching efficiency (m̂0t = 0).16 With these counter-factual

V/U ratios in hand, we then replicate our two previous exercises —out-of-sample forecasting

and in-sample Phillips curve estimation—, to isolate the contributions of each Beveridge curve

shifters.

stages of recessions, bursts of layoffs tilt the pool of unemployed towards short-term unemployed and this raises
matching efficiency: the aggregate job finding rate is higher than it would be given the level of the V/U ratio.

16Specifically, for (i) we evaluate the performance of a counterfactual V/U ratio θ̃
(i)
t ≡ (β̂u − 1)ût − et, where

β̂u and et are estimated from (16). This counterfactual V/U ratio holds matching efficiency fixed and thus

makes it possible to assess the contribution of the time-varying separation rate to the performances of θ̂t over
ût. We proceed similarly to get the contribution of matching efficiency with the counterfactual V/U ratio

θ̃
(ii)
t ≡ (β̂u − 1)ût − βsŝt.
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Figures 1 and 2 (orange and yellow bars) decompose the superior forecasting performances

of θ̂t over ût into the respective contributions of ŝt, m̂0t and out-of-steady-state dynamics. In

both cases, we can see that a large contributor to the superior forecasting performance of the

V/U ratio comes from movements in matching efficiency.

Next, we estimate the more general Phillips curve specification implied by (19) and measure

the importance of Beveridge curve shifts by running the regressions

πt = βπEtπ∞ − βuût + βδ δ̂t︸︷︷︸
Contribution of BC shifts

+ et

and

πt = βπEtπ∞ − βuût + βsŝt︸︷︷︸
Contribution of st

+ βm0m̂0t︸ ︷︷ ︸
Contribution of m0t

+ et.

Table 4 confirms the importance of Beveridge curve shifts in column (3). The coefficient on

δ̂t is significant: outward shifts in the Beveridge curve correlate strongly with rises in inflation.

We can run a similar analysis using the MSA-level data. Specifically, to construct MSA-specific

Beveridge curve shifts δ̂it we run MSA-level regressions of the log vacancy rate on the log

unemployment rate including time and MSA fixed effects, along with MSA-specific trends.

Table 5 shows results of this exercise on the MSA-level Phillips curve estimates. Column (1)

includes the log of the unemployment rate alone, while column (3) includes MSA-level shifts in

the Beveridge curve. The results show again that shifts in the MSA Beveridge curve (δ̂it) are

statistically significant, i.e., that MSA-level Beveridge curve shifts contain information about

future inflation, over and above the inclusion of û.

Last, column (4) of Table 4 shows that, consistent with (5.2), both the job separation rate

and matching efficiency correlate strongly with inflation. While an exploration of the sources

of the decline in matching efficiency is outside the scope of this paper, one lesson of our study

is that the behavior of matching efficiency is an important topic that extends beyond labor

market studies: it has direct implications for our understanding of inflation.

In fact, to get a sense of the contribution of Beveridge curve shifts to past inflation, Figure

6 repeats Figure 5 but where we converted the Beveridge curve shifts into units of additional

inflation, using the estimate from Table 4, column (3). We can see that Beveridge curve shifts

explain about 1 to 2 ppt of inflation fluctuations since 1960.
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Figure 6: Beveridge curve shifts and matching efficiency
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Notes: The Beveridge curve is estimated over 1951-2007. The blue line (Beveridge curve shifts) is the sum of

the dashed green line (unemployment inflow rate), the dashed black line (out of steady state dynamics) and the

red line (matching efficiency movements).

6 Nonlinear effects of slack on inflation

In light of the post-COVID surge in inflation, a number of recent works have argued that

slack has a nonlinear effect on inflation; that the Phillips curve can steepen substantially in tight

labor markets (Benigno and Eggertsson, 2023; Crust et al., 2023; Gitti, 2024). Using our Bev-

eridge curve decomposition (18), we can explore the sources of that nonlinearity. Specifically,

for our baseline Phillips curve with the log V/U ratio as the forcing variable, we have

πt = Etπ∞ + βθ(θt)θ̂t + ωt

= Etπ∞ + βu(θt)ût + βδ(θt)δ̂t + ωt (20)

Clearly, if βθ—the slope of the Phillips curve—depends on θ̂t, then the Phillips curve is non-

linear—a genuine nonlinearity. However, equation (20) suggests another possibility: that the

Beveridge curve shifts (δt) systematically in tight labor markets; when the V/U ratio is high.17

In that case, the Phillips curve can appear non-linear: in tight labor markets, systematic

Beveridge curve shifts would move inflation (above and beyond ût), and give the impression of

17This could happen if the matching function is not exactly Cobb-Douglas: for instance, if matching efficiency
declines systematically in tight labor markets.
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a non-linear Phillips curve. To test between these different possibilities, we run the regression:

πt = βπEtπ∞ + βuût + γuût1θt>θ̄ + βδ δ̂t + γδ δ̂t1θt>θ̄ + ωt , (21)

using as threshold variable θ̄ the median of θt.
18

Table 6, column (2) confirms the presence of nonlinearities in the effect of the V/U ratio

on inflation. Interestingly however, Table 6 column (3) shows that the nonlinearity appears to

stem from systematic shifts in the Beveridge curve: the nonlinearity is entirely explained by

δ̂t. In tighter labor markets (θt > θ̄), outward Beveridge curve shifts “raise” inflation but the

converse is not true in slack labor markets.

Figure 7: Nonlinearities in the MSA-Level Phillips Curve
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We can use the MSA-level variation to further explore the presence of non-linearity. How-

ever, the evidence for nonlinearity is much weaker at the MSA level. In Table 7, we report

tests for nonlinearities in θ̂ (column 2) as well as δ̂ (column 4).19 The results show that the

impact of θ̂t on inflation is quite linear, where the interaction term is positive but insignificant.

Similarly, the effect of δ̂t shows minimal nonlinearity. This can be seen more clearly in Figure

7, which shows a binned scatter plot of the inflation rate (4-quarter change) and θ̂. There is

little evidence of a nonlinear relationship.

7 Conclusion

In this work, we systematically assess the ability of popular variables at (i) predicting

and (ii) explaining inflation fluctuations over time and across U.S. metropolitan areas. In

particular, we exploit a newly constructed panel data set with job openings and vacancy filling

cost proxies covering 1982-2022. We find that the vacancy-unemployment (V/U) ratio and

18Using θ̄ = Eθt + 1.6σθ gives similar results.
19The threshold for the nonlinearity is 50th percentile by MSA, but results are generally similar when altering

the thresholds as shown in Figure 7.
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vacancy filling cost proxies outperform other slack measures, in particular the unemployment

rate. Beveridge curve shifts—notably, movements in matching efficiency—are responsible for

the superior performance of the V/U ratio over unemployment. While the determinants of

movements in matching efficiency are still relatively poorly understood, one lesson of our study

is that the behavior of matching efficiency is an important topic that extends beyond labor

market studies: it has direct implications for our understanding of inflation.
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Table 1: Philips Curve Estimates, 1995-2023

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

ut −0.20∗∗∗
(0.09)

−0.77∗∗∗
(0.11)

— — — — — — — —

θ̂t — — 0.36∗∗∗
(0.09)

0.99∗∗∗
(0.09)

— — — — — —

χ̂t — — — — 0.48∗∗∗
(0.09)

1.15∗∗∗
(0.08)

— — — —

θ̂∗t — — — — — — 0.47∗∗∗
(0.09)

1.16∗∗∗
(0.08)

— —

χ̂∗
t — — — — — — — — 0.71∗∗∗

(0.08)
1.26∗∗∗
(0.09)

Inflation core cyclical core cyclical core cyclical core cyclical core cyclical
Sample 95-23 05-23 95-23 05-23 95-23 05-23 95-23 05-23 95-23 05-23
Adjusted R2 0.03 0.32 0.11 0.53 0.20 0.65 0.21 0.68 0.40 0.66

Notes: The forcing variables were z-scored (demeaned and normalized to unit standard-deviation) for compa-

rability across columns. See Figure 1 for variable definitions.

Table 2: Philips Curve Estimates, 1960-2023

(1) (2) (3) (4) (5) (6)

ut −0.25∗∗∗
(0.06)

−1.12∗∗
(0.57)

— — — —

θ̂t — — 0.33∗∗∗
(0.06)

1.00∗∗
(0.51)

— —

χ̂t — — — — 0.27∗∗∗
(0.07)

1.05∗∗
(0.63)

Etπ∞ 1.04∗∗∗
(0.04)

0.79∗
(0.50)

0.95∗∗∗
(0.07)

0.86∗
(0.46)

0.95∗∗∗
(0.07)

0.90∗
(0.49)

Adjusted R2 0.815 0.824 0.829
Partial R2 0.039 0.080 0.092
IV No Yes No Yes No Yes

Notes: The forcing variables were z-scored (demeaned and normalized to unit standard-deviation) for compa-

rability across columns. See Figure 1 for variable definitions.
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Table 3: Philips Curve Estimates, MSA Level 1982-2022

Dep. variable: Core Inflation (∆4Q)

(1) (2) (3) (4) (5) (6)
u -0.0957∗∗∗ -0.647∗∗∗ -0.392∗∗∗ -0.308∗∗

(0.0282) (0.114) (0.0644) (0.123)

θ̂ 0.280∗∗∗ 0.809∗∗∗ 0.584∗∗∗ 0.591∗∗∗

(0.0351) (0.102) (0.0625) (0.128)
Observations 2431 2431 2431 2431 2431 2431
Adjusted R2 0.329 0.689 0.358 0.695 0.378 0.698
Adj. Within R2 0.329 0.199 0.358 0.215 0.378 0.223
MSA Fixed Effects No Yes No Yes No Yes
MSA Time Trends No Yes No Yes No Yes
Time Fixed Effects No Yes No Yes No Yes

All variables z-scored (demeaned and normalized to unit standard-deviation) for comparability across columns.

Controls included lagged inflation and the lagged ratio of the goods and services price level.

Standard errors clustered by MSA. See Figure 1 for variable definitions.

Table 4: Philips Curve Estimates: Testing for Shifts in Beveridge Curve, 1960-2023

(1) (2) (3) (4)

ût −0.91∗∗∗
(0.13)

1.45∗
(0.75)

−0.42
(0.30)

−0.55∗∗
(0.28)

θ̂t — 1.36∗∗∗
(0.39)

— —

δ̂t — — −1.36∗∗∗
(0.40)

—

ŝt — — — 1.03∗
(0.54)

m̂0t — — — −1.43∗∗∗
(0.40)

Etπ∞ 1.01∗∗∗
(0.07)

0.88∗∗∗
(0.07)

0.88∗∗∗
(0.07)

0.89∗∗∗
(0.07)

Adjusted R2 0.817 0.826 0.826 0.826

Notes: See Figure 1 for variable definitions. δ̂t denotes Beveridge curve shifts, ŝt the (log) unemployment inflow

rate, and m̂0t (log) matching efficiency.

27



Table 5: Philips Curve Estimates, MSA Level: Testing for Shifts in Beveridge Curve

Dep. variable: Core Inflation (∆4Q)

(1) (2) (3)
û -0.687∗∗∗ -0.368∗∗ -0.695∗∗∗

(0.0925) (0.140) (0.0856)

θ̂ 0.506∗∗∗

(0.159)

δ̂ -0.122∗∗∗

(0.0384)
Observations 2431 2431 2431
Adjusted R2 0.694 0.699 0.699
Adj. Within R2 0.211 0.225 0.225
MSA Fixed Effects Yes Yes Yes
MSA Time Trends Yes Yes Yes
Time Fixed Effects Yes Yes Yes

All variables z-scored (demeaned and normalized to unit standard-

deviation) for comparability across columns. Controls include

lagged inflation and the lagged ratio of the goods and services

price level. Standard errors clustered by MSA.

Table 6: Philips Curve Estimates: Testing for Curvature, 1960-2023

(1) (2) (3)

θ̂t 0.33∗∗∗
(0.06)

−0.10
(0.11)

—

θ̂t1θ>θ̄ — 0.56∗∗∗
(0.10)

—

ût — — −0.29∗∗
(0.13)

ût1θ>θ̄ — — 0.14
(0.10)

δ̂t — — 0.02
(0.10)

δ̂t1θ>θ̄ — — −0.54∗∗∗
(0.07)

Etπ∞ 0.95∗∗∗
(0.07)

1.02∗∗∗
(0.07)

0.99∗∗∗
(0.08)

Adjusted R2 0.826 0.846 0.860

Note: Inflation is core PCE inflation. The threshold is θ̄ = Eθ in columns (2)-(3).
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Table 7: Philips Curve Estimates, MSA Level: Testing for Curvature

Dep. variable: Core Inflation (∆4Q)

(1) (2) (3) (4)

θ̂ 0.809∗∗∗ 0.725∗∗∗

(0.102) (0.154)

θ̂ x (θ > θ̄) 0.203
(0.127)

û -0.695∗∗∗ -0.758∗∗∗

(0.0856) (0.113)

û x (θ > θ̄) 0.294
(0.264)

δ̂ -0.122∗∗∗ -0.0991∗

(0.0384) (0.0541)

δ̂ x (θ > θ̄) -0.206
(0.453)

Observations 2431 2431 2431 2431
Adjusted R2 0.695 0.696 0.699 0.699
Adj. Within R2 0.215 0.217 0.225 0.226
MSA Fixed Effects Yes Yes Yes Yes
MSA Time Trends Yes Yes Yes Yes
Time Fixed Effects Yes Yes Yes Yes

All variables z-scored (demeaned and normalized to unit standard-deviation)

for comparability across columns. Controls include lagged inflation, the

lagged ratio of the goods and services price level, and threshold dummies.

Thresholds are the 50th percentile by MSA. Standard errors clustered by MSA

29



Appendix

A Construction of the MSA job posting dataset

We exploit two data sources: (i) the MSA-level “print” help-wanted advertisement index
(HWI) from the Conference Board over 1951-2011, and (ii) the number of “online” job postings
in each MSA from the Conference Board over 2006-2011. As described in Barnichon (2010),
the print HWI is affected by the diffusion of the internet after 1995 as firms switched from print
newspaper job advertising to online job posting. To recover the total number of job postings
from these two series, we model the evolution of the print share in job advertising as a smooth
function. Specifically, the total number of advertisements (print and online) Vt is given by
Vt = V p

t + V o
t where V p

t and V o
t are the numbers of print and online job postings and

ωt =
V p
t

V p
t + V o

t

(22)

is the share of print help-wanted advertising in total advertising. To recover total job openings
Vt from V p

t , we posit that the trend in ln(V p
t ) after 1995 is driven by the diffusion of online

advertising, and we estimate the trend from an HP-filter with λ = 107 at a monthly frequency
in order to capture a slowly moving trend. As in Barnichon (2010), we model ωt with a Mixed
Information Source Model, which has been shown to successfully capture the diffusion of the
internet in the U.S. population (e.g., Geroski, 2000):

ωt = 1− 1− e−γt

1 + αe−βt
, (23)

which we estimate over the trend in V p
t . We repeat this procedure separately for each MSA to

obtain an MSA-specific print share ωit.

B Matching efficiency

To measure m̂0t —movements in matching efficiency— we run the regression

θ̂t = βuût + βsŝt + βo∆ût+1 + et (24)

where st is measured from short-term unemployment, and we take m̂0t as the regression residual.
Figure A1 plots our estimated matching efficiency series. Notice two features. First, match-

ing efficiency displays cyclical oscillations, generally rising in the early stages of recessions and
deteriorating thereafter. This is mostly due to a composition effect, as the average unemploy-
ment duration of the unemployment pool varies with the cycle (see Barnichon and Figura,
2015). Second, matching efficiency displayed a large decline in the 2008-2009 recession, but did
not fully recover before dropping again in the post-COVID recovery. One hypothesis is that
the post-COVID decline in matching efficiency is linked to the Great Resignation — a general
reconsideration of career choices and work-life balance (e.g., Bagga et al., 2023).
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Figure A1: Matching efficiency
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C Measuring inflow and outflow rates

To measure the monthly inflow and outflow rates at the national level, we use the difference
equation

Ut+1 = (1− Ft)Ut + U<5wks
t+1

where Ut and U
<5wks
t denote respectively the total number of unemployed and the number of

unemployed for less than 5 weeks (the newly unemployed during the month).
This unemployment outflow probability is then given by

Ft = 1−
Ut+1 − U<5wks

t+1

Ut

,

and the outflow rate is ft = − ln (1− Ft).
The unemployment inflow probability is obtained from

St(Lt − Ut) = U<5wks
t+1

where Lt is the labor force size . The inflow rate is then st = − ln (1− St).
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C.1 Raw series for inflation and candidate forcing variables

Figure A2: Raw series 1994-2023
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Figure A3: Raw series 1960-2023
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D Services inflation as the dependent variable

Table A1: Philips Curve Estimates, MSA Level 1982-2022, Services inflation

Dep. variable: Services Inflation (∆4Q)

(1) (2) (3) (4) (5) (6)
u -0.356∗∗∗ -0.676∗∗∗ 0.0623 -0.317∗∗∗

(0.0453) (0.122) (0.0747) (0.106)

θ̂ 0.452∗∗∗ 0.851∗∗∗ 0.501∗∗∗ 0.626∗∗∗

(0.0516) (0.152) (0.0851) (0.175)
Observations 2431 2431 2431 2431 2431 2431
Adjusted R2 0.350 0.642 0.380 0.648 0.380 0.651
Adj. Within R2 0.350 0.260 0.380 0.272 0.380 0.278
MSA Fixed Effects No Yes No Yes No Yes
MSA Time Trends No Yes No Yes No Yes
Time Fixed Effects No Yes No Yes No Yes

Standard errors clustered by MSA

Table A2: Philips Curve Estimates, MSA Level: Testing for Shifts in Beveridge Curve, Services
inlfation

Dep. variable: Services Inflation (∆4Q)

(1) (2) (3)
û -0.804∗∗∗ -0.557∗∗∗ -0.810∗∗∗

(0.112) (0.155) (0.108)

θ̂ 0.393∗

(0.204)

δ̂ -0.0945∗

(0.0495)
Observations 2431 2431 2431
Adjusted R2 0.653 0.655 0.655
Adj. Within R2 0.282 0.288 0.288
MSA Fixed Effects Yes Yes Yes
MSA Time Trends Yes Yes Yes
Time Fixed Effects Yes Yes Yes

Standard errors clustered by MSA
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