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1. Introduction

In the last 20 years, an increasingly convenient and widely-used way to estimate how an exogenous

policy intervention or shock will affect an outcome over time—an impulse response—is with local

projections (Jordà, 2005). Given the broad adoption and extensive development of this approach,

a survey now seems very timely. Local projections (or LPs) are a sequence of regressions where

the outcome, dated at increasingly distant horizons, is regressed on the intervention (directly, if

randomly assigned; or perhaps instrumented, if not), conditional on a set of controls that include lags

of both the outcome and the intervention, as well as other exogenous or predetermined variables.

At a basic level, LPs and vector autoregressions (VARs) aim to characterize the dynamic

covariance structure of a system of variables. Perhaps not surprisingly, the impulse response

estimates are asymptotically equivalent (though not in small samples) for the two methods under

relatively general conditions when the data are generated by a VAR (Jordà, 2005; Plagborg-Møller

and Wolf, 2021). They are also equivalent to the estimator of the moving average representation of

the VAR proposed by Chang and Sakata (2007).

Given this equivalence with VARs, why are LPs necessary? The extensive literature on VARs,

which we do not explicitly review here, has shown the many advantages of VARs as a forecasting tool,

and as a simple way to obtain impulse responses. The solutions of many models in macroeconomics

result in a system of difference (or differential equations, as the case may be), which can be well

approximated with a VAR. In turn, impulse response functions can be conveniently estimated and

policy experiments conducted. Depending on the setting, inference can also be less efficient with

LPs. So there are good reasons to use VARs in certain applications.

However, over time LPs have gradually been seen to have several key advantages over VARs,

some of which deserve to be highlighted up front. First, LPs rely on single-equation methods, which

can be advantageous when specifying the full system is inconvenient due to data limitations or

model complexity. Second, as a single-equation method, LPs can be useful in situations where there

are nonlinearities or state-dependence though proper care must be exercised in their interpretation,

as we will discuss. Third, LPs make estimation and inference convenient for many important objects

of study, such as cumulative responses and multipliers. Fourth, LPs provide an encompassing

framework for panel data and difference-in-difference, staggered event studies with heterogeneous

treatment effects, though here the researcher once again faces a bias-variance trade-off.

LPs are of interest in their own right, where the connection to VARs is an advantageous feature

but not necessarily an end in itself. In general experimental settings, the goal is to approximate

the (conditional) mean difference between outcomes when an intervention is administered versus

when it is counterfactually withheld. LPs can be seen as a semi-parametric method that imposes

relatively mild assumptions on the data and on the shape of the response. In fact, Rambachan and

Shephard (2019a,b) provide formal conditions using the potential outcomes paradigm that take this

viewpoint even further in a fully nonparametric direction. The cost is that LPs will be less efficient

than models that impose more structure, such as VARs.
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In this respect, LPs provide a natural nexus between empirical macroeconomics, on the one

hand, and the policy evaluation literature in applied microeconomics on the other. The questions

are fundamentally the same, an exploration of policy counterfactuals and their effects. As a result,

this link between applied problems in macro and microeconomics opens up many interesting and

fertile opportunities for synergistic improvement in both areas (see, e.g., Dube, Girardi, Jordà, and

Taylor, 2023, for an application to difference-in-differences estimation).

The goal of this survey is to overview the statistical properties of LPs, beginning with emphasis

on estimation, inference, and small-sample properties as they have been developed in the literature.

We start from the basics of how to set up and estimate LPs, and then discuss bias, multipliers,

and smoothing, before moving on to inference. Next, we examine topics such as instrumental

variables and other methods of identification, and impulse response decompositions. We provide

a brief discussion on impulse response matching estimators of general models before showcasing

state-dependence and nonlinear extensions, and the latest developments and applications to panel

data. The breadth of material by necessity limits the rigor we can bring to each topic and the extent

of the literature we can cover, though we refer the reader to the original sources for details.1

2. Intuition and basics

We begin with a simple but fairly typical dynamic setting to introduce the main ideas. Let yt denote

an outcome variable of interest. Let the controls xt denote a vector of exogenous or pre-determined

variables, including lags of the outcome and of the policy intervention, which we denote as st. Think

of the policy intervention as an exogenous shock, such as a natural disaster; or a structural shock,

such as a surprise interest rate hike; or a treatment—as when in a panel, some states raise the

minimum wage. Finally, let zt denote a vector of instruments for st, if these are available.2

We are interested in characterizing how an intervention today affects the average outcome at

some time in the future relative to a baseline of no-intervention. Formally, we define an impulse

response as

Rs→y(h, δ) ≡ E[yt+h|st = s0 + δ;xt]− E[yt+h|st = s0;xt] ; h = 0, 1, . . . , H , (1)

where δ is the size of the intervention, or dose. A common scale choice is to normalize δ = 1 in

some units—e.g., a 1 percentage point shock to the interest rate, a 1% of GDP fiscal shock, or a

1 s.d. perturbation. When the unit dose is obvious we may omit δ from the notation, and write

Rs→y(h, 1) ≡ Rs→y(h). Further, the subscript s → y indicates that the intervention s affects the

outcome y. The notation can also be used to distinguish statements of causality. Other times, we

may write Rsy(h), if the context is clear, or we may just omit the subscript altogether.

1A full set of replication code accompanies the paper providing a template for users. It is available at:
https://github.com/ojorda/JEL-Code.

2We will often use the term intervention, shock, or treatment interchangeably.
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The value s0 is a baseline level. In linear models, the baseline will not matter, as it will cancel out

when taking the difference in expectations shown in Equation 1. In nonlinear models, this will not

be the case: the baseline s0 from which the intervention is evaluated can influence the effect of the

intervention itself. Note that as δ → 0, the interpretation of Rs→y(h, δ)/δ is that of a derivative. This

is how impulse responses from VARs are often derived and interpreted and the same can be said

with LPs, though this way of thinking is relatively new to applied macroeconomics and time series

(exceptions include, e.g., Angrist and Kuersteiner, 2011; Angrist, Jordà, and Kuersteiner, 2016).

Baseline LP and LP-IV Each of the expectations in Equation 1 could be estimated with a flexible

estimator. Here, however, we assume linearity to make the example easier to follow. Following

Jordà (2005), the local projection or LP of yt+h on st can be estimated with the following regressions:

yt+h = αh + βh st + γ ′
h xt + vt+h ; h = 0, 1, . . . , H ; (2)

with Rs→y(h) = βh by direct application of the definition in Equation 1. Here, the specific properties

of the residual vt+h and their effect on inference will depend on the data generating process

considered. For now we assume that E(st, vt+h) = 0, e.g., as when st is exogenous (i.e., determined

at random). In this case, the LP is identified and might be estimated by OLS; we might say LP-OLS.

If st is not exogenously determined but we have zt available as instruments for st, we can

then estimate the LP using instrumental variable methods. This we will call LP-IV, introduced by

Jordà, Schularick, and Taylor (2015), a technique that has quickly become a mainstay of applied

macroeconomics research (the literature is now too vast to cite; see, e.g., Ramey, 2016, for a nice

review). Deeper discussion of identification is something we defer and revisit in more detail in

Section 8 where we will further discuss specific conditions that the instruments must meet.

In this section we explore some basic ideas. First, the assumption of linearity may appear

restrictive. However, since a different regression is estimated for each horizon h, one can think of

Equation 2 as a semi-parametric estimate of Rs→y(h): a different regression model at each horizon

approximates the conditional mean described in Equation 1, rather than specifying a model that

characterizes the full dynamic evolution of yt, st,xt, and zt from which one can then derive Rs→y(h)
at all horizons. Second, for reasons that will become clear shortly, vt+h is likely to be serially

correlated up to h lags. Though this feature will not affect the consistency of our estimator for βh, it

affects how inference should be obtained and has implications for small samples that we shall also

discuss in a moment. Third, although Equation 2 is presented as a setup for time series data, it is

clear that it can be extended to panel data settings straightforwardly, as we discuss later. Finally,

many useful nonlinear extensions are easier to implement because the setting in Equation 2 is a

collection of single equations rather than a system.

On this last point, linearity imposes restrictions, whether in a VAR or in a LP, that are seldom

appreciated. Under linearity, (i) interventions have symmetric effects, Rs→y(h, δ) = −Rs→y(h,−δ).

For example, this property implies that interest rate increases reduce inflation by as much as interest
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rate decreases boost inflation. Linearity also means that (ii) responses are independent from recent

history as embedded in the controls (i.e, independent of the state), Rs→y(h, δ|xt) = Rs→y(h, δ).

Thus, a rate hike in a recession, say, is expected to have the same effect as in an expansion.

Finally, linearity means that (iii) responses are linearly proportional to the size of the intervention,

Rs→y(h, δ) = δRs→y(h) = δβh. Hence, doubling an interest rate hike is expected to double the

reduction in inflation. These features are illustrated further in Section 12.

Other times, we may define Equation 1 for other moments of the data. For example, a practitioner

may be interested in the probability of default on a debt at some point in the future if the interest

rate were to increase today. Then Equation 1 could be redefined as follows,

Rs→y(h, δ) ≡ P[yt+h = 1|st = s0 + δ;xt]− P[yt+h = 1|st = s0;xt] ; h = 0, 1, . . . , H , (3)

and this LP form could be estimated with simple logit or probit models. Then, depending on

functional form, the initial value s0 could matter a lot. The effect on the default probability of a 1

percentage point increase in rates when rates are already high could be quite different than when

rates are low. Of course, this point applies more generally when LPs are extended to nonlinear

settings. We leave this and other extensions (e.g., to quantiles) for later sections of the paper.

LPs in relation to VARs Why LPs? The rationale for an LP might be simply that it estimates

a moment in the data of possible interest: that is, without further assumptions on the underlying

data generating process or DGP, the setup at Equation 2 allows one to estimate an economically

interesting statistic and, therefore, no further justification for this regression would be needed.

However, Jordà (2005) and later more formally Plagborg-Møller and Wolf (2021) show that

in large samples, the impulse responses from LPs and VARs of infinite order will be equivalent

under relatively mild conditions. A simple example illustrates this equivalency and other important

properties that help us better understand how to set up LPs. The lengthier details of various

identification approaches will be covered fully in Section 8.

Here, we will consider an illustration just using a VAR(1) with uncorrelated errors. Assume that,

expressed in differences, a random k × 1 vector ∆wt follows a first-order stationary VAR(1) process

∆wt = Φ ∆wt−1 + ut ; ut ∼ D(0, Ωu) ; |λl(Φ)| < 1 for l = 1, . . . , k , (4)

where the constant and any other deterministic terms (such as time trends) are omitted for conve-

nience, but without loss of generality they could have been easily included, and D(0, Ωu) denotes a

generic density with mean 0 and variance Ωu. The notation λl(Φ) refers to one element of the set of

eigenvalues (spectrum) of the matrix Φ; our assumption of stationarity means that the eigenvalues

are inside the unit circle. We will now assume here that the residuals ut are a white noise process

with diagonal covariance matrix Ωu; of course, this will generally not be the case in practice.
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A first order process may seem restrictive, but in reality a wide class of time series processes have

state-space representations where the states evolve as a first-order process as described by Equation 4.

Examples include the more general VAR(p) as well as the less common VARMA(p, q) models, and

countless others (see, e.g., Harvey, 1991; Hamilton, 1994a,b, for these and other examples).

If we propagate forward the process in Equation 4 by recursive substitution, we obtain

∆wt+h = Φh+1 ∆wt−1 + ut+h + Φ ut+h−1 + . . . + Φh ut ; h = 1, . . . , H , (5)

and if we allow H → ∞, given our assumption |λl(Φ)| < 1 for l = 1, . . . , k, and we obtain the

well-known Wold representation

∆wt = ut + Φut−1 + Φ2ut−2 + . . . ,

since ||Φ∞|| → 0.3 This expression makes clear how a shock propagates through the system since

∂∆wt+h

∂ut
= Φh =⇒ ∂∆wi,t+h

∂ujt
= eiΦhe′j ≡ ϕ

(h)
ij ; h = 0, 1, . . . , H , (6)

where el is the lth row of the identity matrix of order k for l = i, j, and simply selects the appropriate

entries of the coefficients in Φh. Here, Φh is the matrix Φ raised to the power h, and we define its

ijth entry to be ϕ
(h)
ij . Thus the impulse response can be expressed as,

Rj→i(h, δ) = ei Φh e′j δ = ϕ
(h)
ij δ , h = 0, 1, . . . , H . (7)

Here the notation Rj→i(h, δ), or later simply Rji(h, δ), uses the index j to denote the shock variable,

and i to denote the response variable. Turning to the representation of the system in levels, note that

from the Wold representation

wt = ut + (I + Φ)ut−1 + (I + Φ + Φ2)ut−2 + . . . , (8)

or, in other words,

∂wt+h

∂ut
= I + Φ + . . . + Φh , (9)

so that the impulse response in levels is just the cumulative of the responses in differences. This

observation can also be seen by realizing that wt+h −wt−1 = ∆wt+h + . . . + ∆wt. Using similar

notation to Equation 7, we may denote the cumulative response as

Rc
j→i(h, δ) = ei (I + Φ + . . . + Φh) e′j δ = (1 + ϕ

(1)
ij + . . . + ϕ

(h)
ij ) δ , h = 0, 1, . . . , H , (10)

3The notation ||A|| = [Tr(A′A)]1/2 refers to the Frobenius norm where Tr(B) is the trace of the square
matrix B, that is the sum of the elements in the main diagonal.
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where we now use the superscript c to denote that we are calculating the cumulative response and

hence, Rc
j→i(h, δ) = ∑h

l=1 Rj→i(l, δ).

Comments and caveats Several observations deserve comment. First, estimation of Rj→i(h, δ)

or Rc
j→i(h, δ) appears straightforward—it only requires the estimation of the VAR and a simple

transformation of the estimated matrix of parameters, Φ, to obtain impulse response estimates.

Second, the previous discussion, however, also suggests that Rj→i(h, δ) can be directly estimated

from a univariate regression of the first difference ∆wi,t+h on ∆wj,t, or if Rc
j→i(h, δ) is desired, a

regression of the long difference ∆hwi,t+h ≡ wi,t+h − wi,t−1 on ∆wj,t.4 Either of these can clearly be

seen as special cases of the local projection presented in Equation 2.

Asymptotic results to derive inferential procedures for impulse responses estimated with a

VAR are well developed. The closed-form asymptotic expressions rely on the delta-method, and

simulation methods, such as the bootstrap, or even Bayesian Markov Chain Monte Carlo (MCMC)

methods are readily available in most econometrics software packages. However, though it is very

rarely acknowledged, even stationary VARs suffer from small sample biases as noted by Nicholls

and Pope (1988) and Pope (1990). These biases are inversely related to the sample size T, and they

are often ignored in applied work. However, in relevant small samples and with high persistence

processes, the biases can be considerable, as we discuss below in comparison to LPs.5

Similarly, asymptotic-based inference for LPs is easy to derive since LP coefficient estimates are

themselves the impulse response coefficients, although corrections for serial correlation are needed

and will result in bigger standard errors. We return to these issues in more detail in Section 6.

Further, LPs can also suffer from small sample issues, though these can be greatly remedied for

many situations of interest, as we shall see, and this remains an area of ongoing research.

We conclude by noting that, to our knowledge, there is no well-established method to select how

many lags to include in the LP. Selection criteria are invalid when residuals are autocorrelated, as in

LPs for h > 1. However, since the LP in the first horizon h = 1 is equivalent to the corresponding

equation in a VAR, a natural approach is to use information criteria to determine the lag-length as

usual for that case, and then use the same lag-length at subsequent horizons. One caveat is that

some inferential procedures call for lag-augmentation (that is, adding one more lag than needed),

something that we discuss further in Section 6.

All that said, local projections do tend to be more forgiving when the lag length is not correctly

chosen. Jordà, Singh, and Taylor (2024) show that in infinite order processes, LPs have lower bias

than VARs at horizons greater than the optimal truncation lag-length. The reason is that in a local

projection, the impulse response coefficient is directly estimated. Small misspecification errors

do not compound, as they do when estimating impulse responses with a VAR. Plagborg-Møller,

Montiel-Olea, Qian, and Wolf (2024) further show that, while VAR confidence intervals substantially

4From here on we abuse the notation, and thus the long difference ∆hwi,t+h will mean wi,t+h − wi,t−1 rather
than wi,t+h − wi,t so as to keep notation to a minimum.

5Formally, this bias is order O(T−1).
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undercover with misspecification so small that it is difficult to detect statistically, LPs enjoy a “doubly

robust” property of having lower bias and providing correct coverage even with misspecification

that can be detected with probability approaching 1.

3. Specification choice: Levels versus long differences

The practitioner has several choices of LP specification to estimate impulse responses, as seen above.

In the original formulation of local projections by Jordà (2005) the specification was set up in levels.

But just because the system can be set up in levels, yt+h, does not mean that it should be estimated

that way. Indeed, over the subsequent years in our own applied work we have generally turned to

the long difference specification, yt+h − yt−1, as our preferred tool. Note that going forward, we will

now use the even simpler notation Rsy(h) rather than Rs→y(h).

Stationary case Consider a simple but informative example. Suppose the DGP for the outcome

yt is given by yt = α + st + ρyt−1 + ϵt, the assumptions of the previous section hold, and 0 < ρ < 1.

The treatment, st, and noise, ϵt, are assumed i.i.d. standard normal (for simplicity). One could

complicate matters in a variety of ways that we refrain from exploring here to focus on the intuition.

In this example the true impulse response for a unit shock is clearly Rsy(h) = ρh. Consider two

possible LP specifications that are often used in estimation of the impulse response,

Level: yt+h = αL
h + βL

hst + γL
h yt−1 + uL

t+h ; (11)

Long difference: yt+h − yt−1 = αLD
h + βLD

h st + γLD
h (yt−1 − yt−2) + uLD

t+h . (12)

In the first case, the levels specification, we regress the level of the outcome at horizon h (i.e., yt+h)

on its lag (yt−1) and the treatment (st). In the second case, the long difference specification, we

regress the long difference in the outcome at horizon h, ∆hyt+h ≡ yt+h − yt−1, on the lagged first

difference, ∆yt−1 = yt−1 − yt−2, and the treatment, st.6 Hence the levels impulse response estimate is

R̂L
sy(h) = β̂L

h whereas the long-differences estimate is R̂LD
sy (h) = β̂LD

h .

Asymptotically, both of these specifications are equivalent and would recover the same impulse

response Rsy(h) = ρh as in the true model. However, in small samples, the problem of bias with

autocorrelation can be severe, as first identified by Orcutt (1948), Marriott and Pope (1954) and

Kendall (1954). These earlier results were then expanded to express the small sample biases in VAR

models by Nicholls and Pope (1988) and Pope (1990). This issue has been explored for LPs in recent

papers by Piger and Stockwell (2023) and Herbst and Johannsen (2024).

In particular, Piger and Stockwell (2023) explore the “pure” long-difference specifications above

which include only the lagged difference, and not the lagged level, as a control. The results are

6As a reminder, note that the notation ∆hyt+h refers to yt+h − yt−1 and not yt+h − yt−1. Note also that we
assume ∆st = st = 0, 1, i.e., treatment does not happen in two consecutive periods.
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Figure 1: Small-sample biases for LPs estimated in level and long-difference forms
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striking. The small-sample bias7 of order O(T−1) discussed in Herbst and Johannsen (2024) is

largely suppressed when |ρ| < 1. (It is even substantially reduced when |ρ| = 1.)

As an illustration, panel (a) of Figure 1 shows the bias reduction when estimating an AR(1)

model, yt = ρyt−1 + ϵt, where the DGP is yt = st + ρyt−1 + ϵt with ρ = 0.95 for a sample of T = 100

observations. Thus it should be clear that Rsy(h) = ρh and hence the AR(1) would be correctly

specified. Since Marriott and Pope (1954) we have known about the small-sample downward bias in

autoregressive models as is evident also in our simulation, specially as the horizon increases. The

LP estimated in levels also exhibits a similar bias. However, the long-difference estimate works to

effectively eliminate the bias at all horizons.

What is the intuition for the source of the bias? When considering least-squares based estimators

of the parameter of interest using time series data, the bias formula (see, e.g., Stuart and Ord, 2010)

can be approximated with the Taylor series expansion, as in Marriott and Pope (1954),

E(β̂h) = βh + E
(

Nt

Dt

)
≈ E(Nt)

E(Dt)︸ ︷︷ ︸
usual

approximation

− cov(Nt, Dt)

E(Dt)2 +
Var(Nt)E(Nt)

E(Dt)3︸ ︷︷ ︸
higher order asymptotic terms

+ O(T−3/2) , (13)

7The shorthand O(T−1) can be interpreted as bias/T → 0 as T → ∞.
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where Nt = 1
T−h ∑T−h

t=1 ut+h xt refers to the numerator, and Dt = 1
T−h ∑T−h

t=1 xt x
′
t refers to the

denominator of typical least squares algebra with xt = (st, yt−1) for the levels case and xt =

(st, ∆yt−1) for the long-difference case. In time series, even if E(Nt) = 0, as is typically the

case, cov(Nt, Dt) need not be exactly 0 in small samples (though cov(Nt, Dt) → 0 as T → ∞).

Long-differencing essentially works to suppress this covariance term, at least here for ρ close to 1.

Understanding these patterns of small-sample bias reduction is a goal for further research.

Non-stationary case As is often the case, analysis of the non-stationary case is more complicated,

even for the example of the simple model above with ρ = 1 shown in panel (b) of Figure 1 when

T = 100. In the case of the AR(1) estimator it is well known that the estimate ρ̂AR(1) suffers from

an O(T−1) downward bias, and various approximations have been presented in the literature,

with some extensions to higher orders (White, 1957; Evans and Savin, 1981). Thus, when the

impulse response at horizon h is then computed via compounding as ρ̂h
AR(1), this well-known bias is

propagated forwards and magnified at all horizons.

This problem of bias is clearly seen in the simulations in Figure 1, panel (b). We can also see that

it equally contaminates the AR(1) estimate and the LP estimated using the levels specification. The

long difference LP specification does not completely eliminate this bias, although it does attenuate it

considerably, as noted by Piger and Stockwell (2023).

Large-sample asymptotics Of course, as T → ∞ for fixed h, both levels and long-difference

estimates are consistent; they converge to the true impulse response, and the distribution of the

estimates is asymptotically normal. But problems might arise when h increases in proportion to

sample size T, as T → ∞. For example, in the non-stationary case, Phillips (1998) shows that the

distribution of the impulse response coefficients in an autoregressive model is no longer normal,

and the estimate is inconsistent. Pesavento and Rossi (2006, 2007) and Mikusheva (2012) develop

methods to calculate confidence sets for impulse responses for this case. Though similar issues

likely pervade responses estimated with LPs, including possibly also the stationary case, we are not

aware of results yet in the literature that comprehensively deal with all of these issues. What about

panel data? In a recent paper, Mei, Sheng, and Shi (2023) show that incidental parameter biases

(Nickell, 1981) crop up when the dimensions of the panel N, T → ∞ as N/T → c for c ∈ (0, ∞). The

solution that they propose in the paper is to use the split panel jacknife estimator of Dhaene and

Jochmans (2016) and Chudik, Pesaran, and Yang (2018). Denote β̂h the full sample panel estimate

with fixed-effects and β̂a
h and β̂b

h estimates based on splitting the sample along the time series

dimension into two halves. Then the bias corrected estimate of the impulse response, β̃h, is simply

β̃h = 2β̂h − 1
2

(
β̂a

h + β̂b
h

)
.
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4. One-off treatments versus treatment plans: Multipliers

The previous section clarifies the statistical connection between impulse responses estimated with

LPs and VARs. In this section instead, we discuss the economic connection and what it means for

interpretation of impulse responses. To explain the main ideas, we use a simple model discussed in

Alloza, Gonzalo, and Sanz (2019). Consider a setting where the data are generated by the following,

highly stylized, structural process(
1 −β

0 1

)(
yt

st

)
=

(
ϕyy ϕys

ϕsy ϕss

)(
yt−1

st−1

)
+

(
uy

t

us
t

)
; E(ut) = 0 ; Cov(uy

t , us
t) = 0 . (14)

Think of Equation 14 as a structural VAR, where st is the policy variable and yt the outcome variable

and hence β is the effect on impact of a shock to us
t . This simple process allows one to think of four

cases of interest.

1. No propagation Suppose ϕij = 0 for any i, j ∈ {y, s}. In this case, the intervention st = us
t is

completely exogenous and there is no propagation of the shock. A regression of yt on st

would recover the effect of the intervention, Rsy(0) = β with Rsy(h) = 0 for h > 0. In fact, if

st ∈ {0, 1}, then β could be estimated as a simple difference in means between treated and

control observations, just like in any randomized controlled trial or RCT.

2. Persistent interventions Suppose instead that ϕss = ϕ ̸= 0, but ϕyy = ϕys = ϕsy = 0. The

intervention st is still exogenous, though an intervention today is followed by subsequent

interventions. Think of it as a treatment plan. The impulse response is Rsy(h) = βϕh. However,

we may ask, what would be the outcome effect if there were no subsequent interventions? In

this example, it is easy to see that the answer would be Rsy(h|st+1 = . . . = st+h = 0) = 0 for

h > 1, just as in the no propagation case.

Another way to think about this issue is to compute the ratio of the overall outcome and

intervention responses, often referred to as the multiplier (see e.g., Mountford and Uhlig, 2009;

Uhlig, 2010; Ramey, 2016; Ramey and Zubairy, 2018). Intuitively, the multiplier calculates

something like an average effect per intervention. This turns out to be exact in our example

m(h) =
β(1 + ϕ + ϕ2 + . . . + ϕh)

(1 + ϕ + ϕ2 + . . . + ϕh)
= β = Rsy(0) . (15)

Which should one report, Rsy(h), Rsy(h|st+1 = . . . = st+h = 0), or m(h)? There is no correct

answer as each responds to a different question. Rsy(h) more closely resembles what we

are likely to observe in practice following an intervention in st and is the typical response

reported in macroeconomics. Rsy(h|st+1 = . . . = st+h = 0) more directly represents the

thought experiment of a one-off intervention, more typical in micro studies of RCTs. In

principle, the Rsy(h) can be obtained as the convolution of Rsy(h|st+1 = . . . = st+h = 0) and

10



Rss(h). The multiplier m(h) offers a natural bridge between these two concepts. In this simple

example Rsy(0) = m(h) for h ≥ 0, but in general, this need not be the case.

3. Internal propagation Suppose ϕyy = ϕ ̸= 0 but ϕys = ϕsy = ϕss = 0. An intervention has

an effect on impact and over subsequent periods so that Rsy(h) = βϕh, the same response

that we obtained previously! But the logic is different. Assignment is still random since

st = us
t and hence an LP would recover this response, which is the dynamic effect of a one-off

intervention. Again, if st ∈ {0, 1}, one can think of this as a typical RCT and the response

can be calculated by comparing the means of treated and control observations at different

points in time. Note that the cumulative response is Rc
sy(h) = β(1 + ϕ + . . . + ϕh) whereas

Rc
ss(h) = 1 since Rss(0) = 1 and is 0 for h > 0. Hence the ratio of cumulative responses or

multiplier is m(h) = β(1− ϕh+1)/(1− ϕ) if |ϕ| < 1. This is a very different number than what

we obtained in the persistent interventions case since the experiment is a one-off intervention

but the process has internal propagation dynamics.

4. The general case Without restrictions, there can be feedback from outcomes to future interven-

tions and vice versa. In this case, disentangling the effects of treatment plans and feedback is

difficult without specifying a model. However, one way to get a sense of the granular effects

of the intervention is to compute the multiplier. We now discuss how to estimate multipliers.

4.1. Multipliers

Consider, as an example, a fiscal policy evaluation exercise. An initial exogenous one dollar of

government spending at time t may lead to more than one dollar of output on impact and over

subsequent periods. Measured this way, the dollar payoff from such a fiscal intervention might

seem large and thus desirable. However, the initial boost to spending is often followed by additional

spending in subsequent periods. Thus, the cost-benefit calculus changes substantially when the

comparison is of the overall increase in output relative to the overall increase in spending over a

given period time. This is the way fiscal multipliers are calculated in, for example, Mountford and

Uhlig (2009); Uhlig (2010); Ramey (2016); Ramey and Zubairy (2018).

Specifically, as in Equation 1, let y denote the outcome variable, and s denote the intervention or

policy variable, then, using the same notation introduced earlier, the cumulative multiplier can be

defined as

m(h) =
Rc

sy(h)
Rc

ss(h)
. (16)

The two cumulative impulse responses could be estimated at each h and then plugged in here to

estimate the ratio m(h). However, calculating standard errors for a ratio of random variables is

complicated as it requires stochastic approximations, similar to the approximation used in Equa-

tion 13. In addition, when Rc
ss(h) → 0, the estimate of the multiplier can become unstable, which

can degrade the stochastic approximation and introduce bias in the standard error computation.

11



Instead, the multiplier can be better calculated in one step from a particular specification of the

local projection (as in Ramey, 2016; Ramey and Zubairy, 2018). Define wc
t,h = (wt + . . . + wt+h) for

wt = yt, st and note that cumulative impulse responses can be calculated from the following LPs,

yc
t,h = βc

h st + vt+h ,

sc
t,h = θc

h st + ηt+h ; h = 0, 1, . . . , H . (17)

Suppose these LPs are estimated using a vector zt as instruments for st (which includes the case

where st itself is exogenous and thus an instrument for itself). As a start we will consider the

just-identified case when there is only one instrument, a scalar zt, before generalizing. Note

that, without loss of generality, we have omitted other controls xt for simplicity, but by appeal

to the Frisch-Waugh-Lovell theorem, the same derivations would follow.8 Finally, assume that

E(vt+h, zt) = E(ηt+h, zt) = 0 for any h, as is expected of an instrumental variable. Later in Section 7

we discuss more precisely the conditions required of instrumental variables for LPs made by Stock

and Watson (2018); Plagborg-Møller and Wolf (2022); and Rambachan and Shephard (2019b).

Taking the covariance of both sides of Equation 17 with zt, it is easy to see that

βc
h =

cov(yc
t,h, zt)

cov(st, zt)
; θc

h =
cov(sc

t,h, zt)

cov(st, zt)
; m(h) =

βc
h

θc
h
=

cov(yc
t,h, zt)

cov(sc
t,h, zt)

. (18)

However, by the same logic, the multiplier term of interest, m(h), can be obtained directly from the

local projection

yc
t,h = m(h) sc

t,h + ϵt+h (19)

estimated using zt as an instrument for sc
t,h since by multiplying both sides by zt and taking

covariances we obtain

cov(yc
t,h, zt) = m(h) cov(sc

t,h, zt) ,

where by assumption cov(zt, ϵt+h) = 0. Thus, the direct method in Equation 19 gives the same

estimate of m(h) as in Equation 18. Going further, after routine manipulations using the 2SLS

estimator, the approach can be generalized to the over-identified case when zt is a vector of

dimension r > 1.9

8In linear models, one can remove the effect of the additional controls by running a preliminary regression
of the outcome and the intervention on the controls. Then one can regress the residuals from these preliminary
regressions on each other and obtain the same estimator as when the controls are included directly as right-
hand side variables.

9By appeal to the Frisch-Waugh-Lovell theorem, we again can project the controls onto the dependent
variable, the intervention and the instruments in a first stage and thus write the three relevant 2SLS estimates
as (see, e.g., Wooldridge, 2010, chap. 5):

βc
h =

cov(yc
t,h, ∆ŝt)

cov(∆st, ∆ŝt)
; θc

h =
cov(sc

t,h, ∆ŝt)

cov(∆st, ∆ŝt)
; m(h) =

βc
h

θc
h
=

cov(yc
t,h, sc

t,h)

cov(sc
t,h, ŝc

t,h)
. (20)
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Figure 2: Cumulative fiscal impulse response R f y(h) and multiplier, m f y(h)

(a) full sample, R f y(h)
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(b) full sample, m f y(h)
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Notes: Outcome yit is log real GDP per capita from Jordà and Taylor (2016), and f denotes a fiscal shock, a
treatment ∆sit is dCAPB from Guajardo, Leigh, and Pescatori (2014), updated to 2019, instrument zit is GLP2

size of fiscal consolidation Guajardo, Leigh, and Pescatori (2014), updated to 2019. OECD sample, 1978–2019.
Control variables are two lags of treatment, two lags of outcome, lag change in the public debt to GDP ratio,
and lag of HP-filtered cyclical component of log real GDP per capita. 95% confidence bands are shown and
the joint test (see later).

Figure 2 presents an example of this approach based on Jordà and Taylor (2016) and using the

Jordà, Schularick, and Taylor (2017) Macrohistory dataset. The outcome is log real GDP per capita.

The policy shock is a change in the cyclically-adjusted primary balance measured as a share of GDP.

This shock is based on a narrative identification by Guajardo, Leigh, and Pescatori (2014) updated

to 2019 of fiscal consolidations for an OECD annual panel from 1978 to 2019. Both the cumulative

responses and the multiplier are negative and relatively accurately estimated (based on point-wise

basis confidence bands). Further, joint significant tests (to be discussed later) reject the zero null.

However, whereas the impulse response suggests that the output (real GDP) decline can be as

large as 2% for a 1% of GDP fiscal consolidation (seen in years 1 and 2), the multiplier is much more

stable, suggesting that there is a dollar for dollar effect: a consolidation that reduces the deficit by

one percent of GDP, reduces output by the same amount.

Finally, the methods used to obtain the fiscal multiplier and presented in Equation 19 are, of

course, applicable to other settings. As an example Alessandri, Jordà, and Venditti (2023) calculate

financial multipliers from monetary tightenings that depend on the degree of financial market stress.
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5. Smoothing

Local projections can be thought of as a semi-parametric method of estimating impulse responses.

The advantage is that, as Jordà, Singh, and Taylor (2024) and Plagborg-Møller, Montiel-Olea, Qian,

and Wolf (2024) show, they can reduce bias (sometimes considerably) relative to VARs in settings

where the lag-length is misspecified, or in settings where the truncation lag (under the assumption

that the data are generated by an infinite order process), is relatively short with respect to the

impulse response horizon considered. Because LPs do not impose cross-horizon (smoothness)

restrictions, as VARs do, this has the advantage of reducing bias at the cost of noisier looking

responses and possibly less precise estimates—the usual bias-efficiency trade-off resulting from

imposing fewer restrictions (see, e.g., Li, Plagborg-Møller, and Wolf, 2024). That said and as we shall

see, recent research suggests that these trade-offs can result in correct probability coverage when

conducting formal inference (Xu, 2023; Plagborg-Møller, Montiel-Olea, Qian, and Wolf, 2024).

Smoothness can be easily restored to an LP response in a variety of ways, however, should one

desire. If one views the choppy look of a raw LP response as a symptom of small-sample variation

around a presumed true smooth response, a simple option is to use a rolling-window moving

average over the response coefficients.10 This is essentially what a nonparametric kernel estimator

of the conditional mean does.

More generally, let β̂ = (β̂0, β̂1, . . . , β̂H)
′ be the (H + 1)× 1 vector of LP response coefficients

with covariance matrix Ω̂β. We may conjecture that the true, unknown impulse response is described

by a smooth function, say, βh = f (h) : R → R. In turn, one can approximate smooth functions in a

variety of ways, from Taylor series expansions, to splines, to basis function models for supervised

learning. These approximations will usually require regularization to prevent overfitting, which in

turn involves choosing a tuning parameter, requiring a deeper discussion than this space permits.

Briefly, suppose that f (h) can be approximated as f (h) ≈ ϕ(h; Θ) = ∑J
j=1 cj ϕj(h;θj) with

Θ = (c1,θ1, . . . , cJ ,θJ)
′ where ϕj(h;θj) is a basis function that depends on a small number of

parameters, θj. We assume that the approximation can be made arbitrarily precise as J → ∞. Ideally,

we want to choose ϕj(h;θj) so that the shape of the response can be well approximated with as

few basis functions as possible (sometimes as small as J = 1, as we will see). Hence, suppose

βh ≈ ϕ(h; Θ) with dim(Θ) ≪ dim(β). In such a scenario, given estimates β̂ and Ω̂β such that

β̂
p→ β; Ω̂β

p→ Ωβ for Ωβ a positive semidefinite matrix, then estimates of Θ and ΩΘ can be easily

obtained by minimum distance as the solution to the problem:

min
θ

Q(Θ) = min
Θ

(β̂− ϕ(Θ))′Ω̂β
−1
(β̂− ϕ(Θ)) , (21)

where Θ̂
p→ Θ and

√
T − H(Θ̂ − Θ)

d→ N (0, ΩΘ) with ΩΘ = (Φ′
0Ω̂βΦ0)−1 and where Φ0 =

10For example, in STATA one could use the tssmooth command.
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∂ϕ(Θ)/∂Θ′|Θ0 . Moreover, when k = dim(β)− dim(Θ) > 0, then

Q(Θ̂) = (β̂− ϕ(Θ̂))′Ω̂−1
β (β̂− ϕ(Θ̂))

d→ χ2
k , (22)

which provides an overidentifying restrictions test with which to evaluate the quality of the

approximation provided by ϕ(Θ). Alternatively, one can write down ϕ(h; Θ) as the coefficient of

the local projection and estimate ϕ(h; Θ) directly using, for example, GMM. This is how Figure 6 is

constructed, for example, later in the paper.

Two examples from the literature have received the most attention. In Barnichon and Brownlees

(2019), the authors use the B-spline method of Eilers and Marx (1996). B-splines take the form

ϕj(h;θj) = c1jsin
( 2π

H j h
)
+ c2jcos

( 2π
H j h

)
; j = 1, . . . , J .

Hence, local projections can be estimated by penalized least-squares as

yt+h = ϕ1(h;θ1)st + . . . + ϕJ(h;θJ)st + vt+h , (23)

where for simplicity, we omit the constant term and xt. The B-spline method can smooth the

response over a wide variety of shapes using convenient least-squares methods. However, because

the analyst is required to choose a tuning parameter for regularization, the theoretical justification

for how to construct standard errors formally has not yet been developed.

In Barnichon and Matthes (2018), the authors use Gaussian basis functions, specifically ϕ(h; Θ) =

a exp[−((h − b)2/c2)] for Θ = (a, b, c)′. This single basis function approximates single-humped

responses very well. Figure 3 shows an example of what this function looks like. The parameters

a, b, and c have an interesting and useful interpretation as is shown in Figure 3. The parameter a
measures the height of the “hump”; b measures how many periods from the initial shock until the

response reach its peak; and c
√

ln 2 measures the half-life of the peak response.

As an example below, we will apply this approach later to the response of the unemployment

rate to a shock in the policy interest rate in Figure 6, to be discussed in detail later. Importantly,

when H + 1 ≫ 3, we will see that there is substantial reduction in the dimension of the parameter

vector, resulting in considerably more efficient responses, as Figure 6 shows.

Still, although many typical macroeconomic responses are single-humped in shape, and also

take all positive (or all negative) values, i.e., are single-signed, many other responses exhibit more

than one hump, or have shapes that shift from positive to negative values and vice versa. Such

shapes require expanding the basis function approximation by at least one term, which reduces the

benefits of this approach considerably (since the parameters of each basis function are harder to

identify separately). In such cases, approximation with B-splines becomes more attractive.
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Figure 3: A typical Gaussian basis function
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6. Pointwise inference

Unlike more traditional settings in econometrics, we shall see that conducting inference on responses

calculated with LPs has a few interesting wrinkles. In this section, after introducing basic ideas, we

discuss robust pointwise inference based on adding extra lags in the regression (lag-augmentation)

that is uniformly valid over both stationary and non-stationary data and over a wide range of

response horizons (Montiel Olea and Plagborg-Møller, 2021). Moreover, when the true lag is

unknown and possibly infinite, LPs are semi-parametrically efficient if the controlled lag diverges

with the sample, which means that the efficiency loss of local projections relative to other methods

vanishes asympotically (Xu, 2023). Plagborg-Møller, Montiel-Olea, Qian, and Wolf (2024) further

show that LP confidence intervals are surprisingly robust to misspecification, offering the correct

probability coverage relative to VARs that are only mildly misspecified.

As always, and even as with VARs, we must be alert to small-sample problems. Since impulse

responses are functions of VAR parameters, they will inherit small-sample biases (see, e.g., Kilian,

1998, 1999, for a VAR bootstrap procedure to correct small-sample inference). We wait until the next

section to consider issues of simultaneous inference, when we are interested in characterizing the

uncertainty of the impulse response path rather than individual elements of the impulse response.
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6.1. The moving-average residual structure of local projections

The basic features of LP inference are easily shown with a simple AR(1) example,11 such as

wt = ϕwt−1 + ut. By repeated substitution, e.g. as in Equation 5 earlier for a VAR(1), the LP is

wt+h = ϕh+1 wt−1 + vt+h ; vt+h = ut+h + ϕ ut+h−1 + . . . + ϕh ut ; h = 1, . . . , H . (24)

Thus, the regression of wt+h on wt−1 will have serially dependent residuals (though dated t + h thru

t rather than depending on past values), in this case, a moving-average of order h or MA(h). A

simple solution proposed by Jordà (2005) is to use a heteroskedasticity and autocorrelation consistent

(HAC) covariance estimator, such as Newey-West (Newey and West, 1987). This semi-parametric

correction obviates the need to assume that the particular dependence of the residuals is known.

Much of the literature appears to follow a similar strategy, even when it comes to panel data, where

the Driscoll-Kraay (Driscoll and Kraay, 1998) covariance estimator is used instead.

6.2. The basic issues

In this section and the next we take a very stylized model to explain the main issues. In particular,

suppose the DGP is a simple AR(1) model given by

wt = ϕwt−1 + ut ; t = 1, . . . , T ; w0 = 0 , (25)

where ut is strictly stationary and we further assume E(ut|{us}s ̸=t) = 0 almost surely. We make this

assumption to follow the setup in Montiel Olea and Plagborg-Møller (2021), later used to present

estimation of LPs with lag-augmentation. Using also the notation in that paper as well, let β(ϕ, h)
denote the LP parameter used to estimate the impulse response ϕh, that is

wt+h = β(ϕ, h)wt + ξt(ϕ, h) ; ξt(ϕ, h) ≡
h

∑
l=1

ϕh−l ut+l . (26)

As we remarked earlier, the moving average form of ξt(ϕ, h) led Jordà (2005) to recommend HAC-

robust standard errors. In addition, note that when ϕ → 1, β̂(ϕ, h) will have a near-unit root

distribution. The resulting downward bias in the estimator of the impulse response is well-known

(see, e.g., Pesavento and Rossi, 2006, 2007, in the context of impulse responses estimated with VARs

with roots near to unity).

Near-to-unity asymptotic results indicate that inference based on critical normal values will not

be valid uniformly over all values of ϕ ∈ [−1, 1] even for fixed h. However, when ϕ is inside the

stationary region, the LP estimator is asymptotically normal.12

11We omit the constant term, deterministic trends and other features to keep the exposition simple.
12In order to stay in the strictly stationary region, we may assume ϕ = 1 − cT/T such that 2 > cT/T > 0 as

T → ∞, for example.
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6.3. Lag-augmented local projections

A simple extension to the traditional local projection estimator turns out to simplify inference

considerably. In particular, Montiel Olea and Plagborg-Møller (2021) suggest adding wt−1 as an

additional regressor to Equation 26. The purpose of this lag augmentation is to make the effective

regressor of interest stationary even if the data wt has a unit root. Montiel Olea and Plagborg-Møller

(2021) show that, with rearranging, the lag-augmented local projection can be written as

wt+h = β(ϕ, h) ut + β(ϕ, h + 1)wt−1 + ξt(ϕ, h) . (27)

Although ut is stationary and therefore would sidestep distortions to the normal distribution caused

by near-to-unity asymptotics, it is not directly observed. However, due to the linear relationship

between wt and ut, the feasible local projection onto (wt, wt−1) provides an estimate of β(ϕ, h)
precisely equal to the one that would be obtained from the projection onto (ut, wt−1). Thus, the

actual regression to be estimated is

wt+h = β(h)wt + β(h + 1)wt−1 + ξt(h) → β̂(h), ξ̂t(h) . (28)

Lag-augmentation has two benefits. As Montiel Olea and Plagborg-Møller (2021) show, the

distribution of β̂(h) of this feasible lag-augmented local projection is uniformly normal in ϕ ∈ [−1, 1]

using similar arguments as lag-augmentation in AR inference (see, e.g., Sims, Stock, and Watson,

1990; Toda and Yamamoto, 1995; Dolado and Lütkepohl, 1996; Inoue and Kilian, 2002, 2020). The

second benefit is that it simplifies the computation of standard errors.

In particular, it is sufficient to use a heteroskedasticity-robust routine to estimate standard errors

for β̂(h), like the usual White correction (in STATA, reg with the option robust or even better, hc3).

How can we magically dispense with the moving average structure of the residuals evident in

Equation 26? From Equation 27, note that ut was assumed to be uncorrelated with past and future

values of itself, and therefore the regression score ξt(ϕ, h)ut is serially uncorrelated. To see this, note

that the standard error formula in the ideal regression of Equation 27 would be

ŝh =
(∑T−h

t=1 ξ̂t(ϕ, h)2û2
t )

1/2

∑T−h
t=1 û2

t
. (29)

But by similar linearity arguments used to justify the feasible augmented local projection, it can be

calculated directly from Equation 28 using White corrected standard errors as indicated. In addition,

Montiel Olea and Plagborg-Møller (2021) show that lag-augmented LP inference is relatively robust

to persistent data and provides appropriate coverage even at relatively long horizons (as long as

hT/T → 0).

Moreover, lag-augmentation is shown to work more generally when the DGP is assumed to be a

VAR(p) or a vector error correction model (VECM), though we are not aware that similar results have

been derived for panel data in settings where the time dimension is larger than the cross section
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Figure 4: Comparing Newey-West versus lag-augmented confidence bands
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Response: Confidence intervals: Newey-West Lag-augmentated

Notes: Data generated from a bivariate VAR(1). The simulated sample size is 300 observations after disregard-
ing 500 initialization observations. Response shown with Newey-West (shaded region) versus lag-augmented
(dashed line) 95% confidence bands. See text.

dimension, i.e., T ≫ N. Of course, when N ≫ T, asymptotic results are driven by the cross-sectional

dimension of the panel and then the asymptotic distribution is normal even when the data are

persistent. Naturally, lag-augmentation can also be applied to identified LPs (Plagborg-Møller and

Wolf, 2021; Montiel Olea and Plagborg-Møller, 2021).

As an illustration of how Newey-West and lag-augmented confidence intervals compare, Figure 4

shows the results from a simple simulation based on the bivariate model(
yt

xt

)
=

(
0.7 0.2

0.2 0.7

)(
yt−1

xt−1

)
+

(
uy

t

ux
t

)
; uy

t = ey
t + ex

t , ux
t = ex

t ; ey
t , ex

t ∼ N(0, 1) ,

with a sample of 300 observations (after disregarding 500 initial observations). The figure shows that

both methods generate similar confidence intervals. In fact, several experiments (not reported here)

suggest that, for stationary data, the coverage is very similar between methods. Lag-augmented

bands tend to be somewhat more conservative the more persistent the data.

Finally, Montiel Olea and Plagborg-Møller (2021) provide bootstrap procedures that we briefly

sketch here though the reader should go to the original source for details. Suppose that you want

to provide inference for an impulse response estimated with lag-augmented LPs for which you

also obtain the standard error as described earlier (i.e., using White corrected standard errors).
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Montiel Olea and Plagborg-Møller (2021) then suggest estimating the corresponding VAR(p).13 This

VAR will serve two purposes. One is to construct the equivalent response to that estimated with

LPs, whose difference is then used to construct the t-ratio using the LP standard error. The second

is to generate bootstrap replicates of the data using a parametric wild bootstrap (see, e.g., Gonçalves

and Kilian, 2004) based on the VAR(p). Using these bootstrap replicates, then one estimates the

lag-augmented LP responses and their standard errors. These are the ingredients necessary to then

construct a percentile-t confidence interval as usual.

6.4. Robustness

In a recent paper, Plagborg-Møller, Montiel-Olea, Qian, and Wolf (2024) provide analytical results

showing that conventional local projection inference is surprisingly robust to large amounts of

misspecification when the data are generated by a local-to-VAR process14 In contrast, VAR confidence

intervals vastly undercover even with small misspecifications that are hard to detect in practice.

VARs are generally specified with too few lags.

Intuitively, a VAR parsimoniously approximates the DGP from which an impulse response is

then derived. This results in better mean-squared error (MSE) properties and smoother looking

impulse responses. In contrast, a local projection approximates the impulse response itself. This

results in lower bias, though possibly higher MSE (Li, Plagborg-Møller, and Wolf, 2024). However,

LPs will result in valid confidence intervals and are, in that sense, superior to VARs from a robustness

standpoint. Moreover, LPs can also be smoothed, if desired, as we previously discussed in Section 5.

7. Joint inference

Impulse responses describe the trajectories of outcome variables following an intervention. Getting

a sense of the uncertainty about the shape of the estimated impulse response is akin to a multiple

hypothesis test. Because estimates of the response coefficients are correlated (except under the

previous null), it is not enough to rely on individual hypothesis tests. In fact, this correlation can

generate wide point-wise bands even when the joint null of significance is soundly rejected, much

like classic regression with collinearity.

Figure 5 illustrates these issues. The experiment in the figure consists of an intervention

measured by a Romer and Romer (2004) monetary shock (extended to 2007Q4)15 where the response

of interest is the cumulative change in the log level of the Consumer Price Index (CPI) in Figure 5a,

and the rate of inflation (i.e., the first difference) in Figure 5b, using as controls four lags of CPI

inflation, real GDP growth, and the federal funds rate.

13One can also bias-adjust the VAR coefficients using the correction by Pope (1990).
14Meaning, a DGP that is approximately a VAR with moving-average terms that are “small” in the

asymptotic sense.
15Data extended by Wieland and Yang (2020)
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Figure 5: Response of the price level and inflation to a Romer-Romer monetary shock

(a) Response of the price level

p-value of joint significance test:     1.12e-17
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(b) Response of inflation

p-value of joint significance test:     1.72e-23
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Notes: The outcome is the cumulative change of 100 times the log of the consumer price index (CPI) in the left
panel and the first difference of the same variable in the right panel. We used four lags of CPI inflation, real
GDP growth, and the federal funds rate as additional controls. The intervention is a Romer and Romer (2004)
shock (extended to 2007). Shaded areas are one and two standard deviation pointwise confidence bands
using heteroscedasticity robust standard errors. Dashed lines are point-wise 95% significance bands (see later).
The blue short-dashed lines are obtained analytically whereas the red long-dashed lines are obtained using
the wild block bootstrap. Sample: 1969Q1–2007Q4. See text.

Figure 5a shows that in response to a 1 percentage point Romer and Romer (2004) monetary

shock, the price level does not respond in the first year. Thereafter, the price level begins to decline.

At the three-year mark, prices are almost 2% lower than at the start (or a rate of deflation of about

0.65% per year). However, point-wise error bands suggest that these dynamics are not statistically

significant for any of the four years (16 quarters) displayed. Figure 5b is noisier but suggests that

changes in the rate of inflation were negative and different from zero in several of the responses as

early as shortly after the first year.

What is the correct interpretation of the evidence? If we recognized that the price level remained

unchanged for about 1 year, would the right conclusion be that thereafter inflation remained

unchanged as well? One would expect that if monetary policy had no effect on prices, we would

see, with roughly equal probability, positive and negative values of the price response. Cleary, this

is not the case. Let’s find out how best to proceed.
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7.1. Local projections as a GMM problem

When hypothesis tests involve LP parameters over several horizons (as the next section does), it is

necessary to estimate LPs as a system to obtain the appropriate covariance matrix. We illustrate

how to do this using the Generalized Method of Moments or GMM. We present the main results

using the outcomes and the intervention only, which you can think of as having been previously

projected onto the controls (and relying on the Frisch-Waugh-Lovell theorem and a linear model).

This allows us to focus on the important results with minimal extra notation.

Let yt(H) = (yt, . . . , yt+h)
′ be an (H + 1)× 1 vector collecting all the left-hand side outcome

variables. Construct St = IH+1 ⊗ st where IH+1 is the identity matrix of order H + 1, and st is

the intervention.16 Collect all the error terms in vt(H) = (vt, . . . , vt+H)
′. Let β = (β0, . . . , βH)

′

collect all the impulse response coefficients. Finally, we entertain the possibility that we have l ≥ 1

external instruments in the 1 × l vector zt and thus we construct Zt = IH+1 ⊗ zt. In the absence of

instruments, if one can appeal to identification based on selection-on-observables arguments (or if

the interventions are exogenous), one can simply set Zt = St.

Using these definitions, the population moment condition for the system of H + 1 local projec-

tions is

E
[
Z′

t(yt(H)− Stβ)
]
= 0 . (30)

Thus, the corresponding sample GMM problem can be specified as

min
β

[
1
N

T−H

∑
t=p+1

Z′
t(yt(H)− Stβ)

]′
Λ̂−1

[
1
N

T−H

∑
t=p+1

Z′
t(yt(H)− Stβ)

]
, (31)

with N = (T − H)− (p + 1). When choosing Λ̂ = IH+1, the estimator is referred to as the equally-

weighted estimator and yields consistent estimates of β. However, the optimal weighting matrix that

corrects for heteroscedasticity and autocorrelation using a Barlett correction such as the well-known

Newey-West estimator is:

Λ̂ = Γ̂0 +
J

∑
j=1

K(j)(Γ̂j + Γ̂′
j); K(j) =

[
1 − j

J + 1

]
; Γ̂j =

1
N

N

∑
t0

Z′
tṽt(H)ṽt−j(H)′Zt−j ,

where ṽt(H) refers to the residuals based on the equally weighted estimator. We do not enter into a

discussion of two-step versus optimally iterated estimators of the weighted matrix (and hence the

estimates of β), for which a discussion can be found in traditional textbooks such as Cameron and

Trivedi (2005) and Wooldridge (2010).

Before proceeding further and as a preview of our discussion on identification with external

instruments, we discuss the assumptions needed. These differ from the usual relevance and

16The notation ⊗ refers to the Kronecker product.
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exogeneity conditions, as Stock and Watson (2018) and Plagborg-Møller and Wolf (2022) show. As a

reminder, we have omitted control variables for simplicity so the assumptions we are about to state

should be understood to be for instruments, interventions, outcomes, and residuals projected onto

explanatory variables other than those in St. Hence, we assume:

Assumption 1

• Relevance: E(Z′
t St) ̸= 0 ;

• Lead-lag exogeneity: E(Z′
t+l vt(H)) = 0 ∀ l.

It is important to note that these conditions are derived from rather standard assumptions about the

DGP. In recent work, Rambachan and Shephard (2019b) provide conditions based on a flexible, fully

nonparametric foundation using a potential outcome time series framework. These conditions are

too technical for this review and we refer the reader to their paper for more details.

Based on Assumption 1 and relatively general conditions, the estimate of the impulse response

Rsy = β can be obtained from

β̂ =

(
1
N

T−H

∑
p+1

S′
tZtΛ̂−1Z′

tSt

)−1(
1
N

T−H

∑
p+1

S′
tZtΛ̂−1Z′

tyt(H)

)
, (32)

which will be consistent and asymptotically normal with approximate covariance matrix given by

Ω̂β =

[(
1
N

T−H

∑
p+1

S′
tZt

)
Λ̂−1

(
1
N

T−H

∑
p+1

Z′
tSt

)]−1

. (33)

One may conjecture that this traditional form of the covariance matrix would be correct with

lag-augmentation, though this particular result is not specifically proven in Montiel Olea and

Plagborg-Møller (2021). Thus, standard system estimators using instrumental variables can be used

to obtain these results (including corrections for heteroskedasticity and autocorrelation). An estimate

of Ωβ plays an important role in the next two sections and for simultaneous inference of the impulse

response in general.

The left panel of Figure 6 provides an example of system LPs estimated by GMM. The estimates

shown are the response of the U.S. unemployment rate when using a Romer-Romer shock as an

instrument for the federal funds rate.

7.2. Simultaneous inference

There will be times when practitioners are interested in assessing the impulse response over a subset

range of periods. As a case in point, Figure 6 shows the response of the unemployment rate to

a monetary shock using monthly data. The response of the unemployment rate to a monetary
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Figure 6: Response of the unemployment rate to a Romer-Romer monetary shock

(a) Response estimated by LP-IV

Joint test,  R(h)=0:  χ2(49)=446.9 (p=0.000)
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(b) Gaussian basis function approximation

GBF parameters:
a=1.388 (0.278)
b=26.189 (0.922)
c=12.997 (0.891)
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Notes: Local projection estimated using the Romer-Romer shock as an instrument for the federal funds
rate. The local projection contains 6 lags of the funds rate, the unemployment rate, and PCE inflation. The
intervention is the Romer and Romer (2004) shock. Left panel shows 95% pointwise confidence bands using
heteroscedasticity robust standard errors based on the raw LP estimates based on GMM. The right panel
shows the same response next to the fitted Gaussian basis function using GMM. The standard errors shown
are directly calculated using GMM. Sample: 1985M1–1999M12. See text.

shock has an almost perfect bell shape. The unemployment rate gradually increases to about 11/4%,

approximately two years after impact, and returns back to zero about four years after impact. Hence

one may be interested in assessing the significance of the change in the unemployment rate between

years 1 and 3 (or between 12 to 36 months), say.

Or we can return to the example shown in Figure 5, where we may be interested in assessing the

significance of the inflation response after 3 years (12 quarters). Properly speaking, point-wise error

bands will not provide the correct coverage to make these assessments. The correct approach is

therefore to construct error bands that account for the simultaneous nature of the implied hypotheses.

This problem was pointed out in Jordà (2009), who provided a solution based on Scheffé’s multiple

comparison approximation (see also Wolf and Wunderli, 2015, for an application of the same idea to

direct forecasts.).

More recently, Montiel-Olea and Plagborg-Møller (2019) propose a different approximation based

on the sup-t procedure that can be easily implemented by simulation methods, the bootstrap, or

using a Bayesian approach. Asymptotically, the sup-t procedure is shown to produce the narrowest

bands of other commonly used methods of simultaneous inference, including Scheffé’s. That

said, these bands will tend to be relatively conservative since they accommodate unspecified nulls.
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Naturally, when the investigator proposes a specific null, an appropriate test can be constructed and

inverted to generate narrower bands.

For now, we introduce the basics of the sup-t bands. Let β = (β0, . . . , βH)
′. Under relatively

general conditions, β̂ → N(0, Ωβ). Hence, we then define the one-parameter confidence band,

B̂(c) = [β̂0 − σ̂0c, β̂0 + σ̂0c]× . . . × [β̂H − σ̂Hc, β̂H + σ̂Hc] =
H⋂

h=0

[β̂h − σ̂hq̂1−α, β̂h + σ̂hq̂1−α] , (34)

where it has been traditional to choose c = 1.96 for point-wise 95% confidence intervals. However,

in order to account for all possible joint tests that a practitioner may want to implement (as in the

examples described earlier based on Figure 5 and Figure 6), notice that

P(β ∈ B̂(c)) → P
(

max
h=0,...,H

∣∣∣σ−1
h Vh

∣∣∣ ≤ c
)

; V = (V1, . . . , VH)
′ ∼ N(0, Ωβ) .

The distribution of maxh=0,...,H

∣∣∣σ−1
h Vh

∣∣∣ in unknown but it is easy enough to simulate any desired

quantile of this distribution.

Accordingly, we can adapt the algorithm proposed in Montiel-Olea and Plagborg-Møller (2019)

to our LP problem as follows:

Plug-in sup-t algorithm

• Step 1: Draw M i.i.d. normal vectors V̂(m) ∼ NH(0H, Ω̂β), m = 1, . . . , M .

• Step 2: Define q̂1−α as the empirical 1 − α quantile of maxh

∣∣∣σ−1
h V̂(m)

h

∣∣∣ across m = 1, . . . , M .

• Step 3: Then B̂(q̂1−α) =
⋂H

h=0[β̂h − σ̂hq̂1−α, β̂h + σ̂hq̂1−α] .

Note that the second step in this algorithm can be substituted easily when bootstrap/Bayesian

methods are used. These extensions are discussed in Montiel-Olea and Plagborg-Møller (2019).

7.3. Significance bands

In a traditional randomized controlled trial the key hypothesis of interest is whether the treatment is

effective. In other words, whether there is sufficient statistical evidence against the null hypothesis

that the treatment has zero effect on the outcome. Similarly, in plotting an impulse response, the

researcher often wants to assess whether the response is statistically different from zero. In the

previous section we argued that, because response coefficients are correlated and this is a joint

hypothesis test, relying on point-wise confidence intervals would provide incorrect probability

coverage for our hypothesis. The previous sections show how to provide bounds to address this

problem.

However, is there a better approach? The problem of assessing the significance of an impulse

response is a familiar one. Think about the way we assess the autocorrelation function in a time
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series. A plot of the autocorrelations at different horizons is accompanied by two confidence interval,

or error bands, on either side of the zero line. These significance bands straddle the null hypothesis

and are, themselves, constructed under the null. If the autocorrelation at a given horizon strays

outside the significance bands, we conclude that such a coefficient must be different from zero, in a

statistical sense.

The key insight is that one can use the Lagrange multiplier (LM) principle to simplify the

construction of the error bands. In fact, the error bands for the autocorrelation function do not

depend on the variance of the data, only on the sample size. For a 95% confidence, the bands are

±1.96/
√

T. We can apply the same logic to think about the significance of the impulse response

and hence construct significance bands. The approach described next relies on Inoue, Jordà, and

Kuersteiner (2024). A simple example conveys the intuition and is easy to generalize.

Consider the local projection yt+h = βhst + vt+h for h = 0, . . . , H. The controls are omitted for

simplicity though we can again exploit the Frisch-Waugh-Lovell theorem and then we can think

of yt+h and st as the result of having projected out the controls. Further suppose that we have an

instrument, zt (we could have more than one, but the main results are more easily grasped with a

single instrument), such that it is relevant and meets the lead-lag exogeneity condition in, e.g., Stock

and Watson (2018).

Let n = T − h, then the asymptotic distribution of the instrumental variable estimator for the LP

can be derived as usual, in particular,

√
n(β̂h − βh) =

n−1/2 ∑n
t=1 ztyt+h

n−1 ∑n
t=1 ztst

h = 0, 1, . . . , H − 1 . (35)

Under relatively general conditions,

1
n

n

∑
t=1

ztst
p→ E(ztst) = γzs ;

1
n1/2

n

∑
t=1

ztyt+h
d→ N(0, gh) . (36)

That is, the denominator will converge in probability to its population moment and the numerator

will be driving the asymptotic distribution. Next, using the LM principle, we will exploit the null

hypothesis to simplify how gh is calculated. Specifically, we can note that

gh = Var

(
1

n1/2

n

∑
t=1

ztyt+h

)
, (37)

which is the typical expression of a HAC type variance formula. Under stronger assumptions

such as independence between zt and vs for all t and s, or homoskedasticity of vt+h such that

E(vt+h−jvt+h|zt, zt−j) = E(vt+h−jvt+h) a further simplification of the expression for gh is possible,
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where gh = g, meaning that the expression no longer depends on h and is in fact, the same for all h:

gh = g ≈
∞

∑
j=−∞

E(ztyt+hzt−jyt+h−j)

=
∞

∑
j=−∞

E(ztzt−j)E(yt+hyt+h−j)

=
∞

∑
j=−∞

γz(j)γy(j) , (38)

where we exploit the assumption that under the null, st and yt+h are unrelated and hence so are zt

and yt+h. In general, however, based on Equation 36 and Equation 37 we have that

√
n(β̂h − 0) d→ N(0, σ2

h ) ; σ2
h =

∑∞
j=−∞ γz(j)γy(j)

γ2
zs

=
gh

γ2
zs

. (39)

In practice, gh cannot be directly estimated as it involves infinite terms but it can be approximated

with a Bartlett correction, such as with the Newey-West estimator.

The intuition for this result can be best provided with a simple example. Consider the univariate

AR(1) case, where z = s = y, then gh = g = γ2
y, the variance of y, which is the same as the

denominator since γ2
zs = γ2

y and therefore σ2
h = 1. In that case, the LP is simply the estimate of the

autocorrelation function. Hence, Equation 39 recovers the well-known bands for the autocorrelogram

of y. In the special case where y is a white noise then
√

n(β̂1 − 0) → N(0, 1), which leads to the

well-known case in which the asymptotic 95% confidence bands are ±1.96/
√

n. Figure 5 provides an

illustration by showing the usual confidence bands alongside the significance bands just described

in the general setting.

The construction of significance bands can be summarized as follows:

Practical construction of significance bands

• Step 1: Calculate the sample average of the product stzt. Call this γ̂sz.

• Step 2: Construct the auxiliary variable ηh
t = yt+hzt. Then regress ηh

t on a constant. The
Newey-West estimate of the standard error of the intercept of this auxiliary regression is then
an estimate of g1/2

h . Call this ĝ1/2
h .

• Step 3: Hence, an estimate of σh/
√

n, is then ŝh
β = ĝ1/2

h /γ̂sz.

• Step 4: Construct the significance bands as: [ξα/2 ŝh
β, ξ1−α/2 ŝh

β] where ξα/2 is the critical value
of a standard normal random variable at significance level α/2.

Inoue, Jordà, and Kuersteiner (2024) also provide a complementary wild block bootstrap procedure

that is easy to implement in practice. We refer readers to that paper for more details and extensions.
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7.4. Summary of best practices: Inference

As discussed earlier, inference in dynamic settings can be tricky. In small samples, serial correlation

can generate estimation biases. This is true whether one estimates impulse responses with LPs or

with VARs, as the literature has showed (see, e.g., Pope, 1990; Kilian and Lütkepohl, 2017; Piger

and Stockwell, 2023; Herbst and Johannsen, 2024). The presence of unit roots or near unit roots

can also make inference complicated (see, e.g., Pesavento and Rossi, 2006, 2007). However, as Piger

and Stockwell (2023) show, small sample biases appear to be considerably reduced when using

long-differencing (as we saw in Figure 1).

In this section we brought several new points to the fore. First, error bands constructed by

inverting point-wise t-ratios (as the literature currently does) should be understood as providing a

sense of the precision with which each coefficient is estimated. Like a typical regression with nearly

collinear regressors, standard errors for individual coefficients can be quite large, even when an

F-test would overwhelmingly reject the null that they are jointly zero. Since a common hypothesis

in any impulse response analysis is to assess whether the response is statistically different from zero,

we think current practice could be extended to display significance bands alongside error bands.

Second, when estimating LPs using individual regressions, as is often done in empirical practice,

estimation of standard errors with lag-augmented specifications and White corrected standard errors

provide a simple solution with correct uniform probability coverage under a wide range of scenarios

(stationarity, near unit roots, non-stationarity) and even for long distance horizons (as long as the

sample size is large enough relative to the horizon). Moreover, these standard errors compare well

with those based on VAR impulse responses.

Third, more conservative bounds based on the sup-t method can be reported instead of point-

wise error bands when one is interested in providing a summary graphical representation that the

reader can use to assess different multiple hypotheses of interest (usually relating to the significance

nulls over subsets of horizons).

Fourth, of course, any formal multiple hypothesis test can be constructed using an estimate of

the covariance matrix of the response coefficients. This can be done by setting up the simultaneous

GMM problem as we showed earlier, which can be based on multiple instrumental variables (as

we will discuss below in Section 8). Finally, there are other alternatives currently being developed.

Lusompa (2018) proposes a feasible GLS procedure where the idea is to parametrically adjust for

the moving-average structure of the residuals using the residuals from the first local projection

and estimates of subsequent impulse response coefficient estimates. Lusompa (2018) also provides

results based on a time-varying parameter Bayesian approach. Following on this last line of research,

Tanaka (2020); Ferreira, Miranda-Agrippino, and Ricco (2023) provide Bayesian estimation routines

for LPs and hence inferential procedures based on the posterior distribution of these estimators.
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8. Causality

Local projections, by themselves, do not solve the problem of identification or rather, the ability

to uncover causal relations. In this section we visit available methods to move the analysis from

correlation to causation. The definition of an impulse response in Equation 1 (repeated here for

convenience) consists of a counterfactual difference in mean outcomes

Rsy(h, δ) ≡ E[yt+h|st = s0 + δ;xt]− E[yt+h|st = s0;xt] ; h = 0, 1, . . . , H ,

where the key to identification is to establish how interventions in st are determined. In practice, st

may not be randomly assigned (to use the potential outcomes language), or it may not be exogenously
determined outside the model. Up to this point, most of the presentation has set aside this issue,

which we now tackle head on.

8.1. Selection-on-observables: LP-OLS

A simple and common approach to identification is selection-on-observables: that is, to assume that

conditional on xt, variation in st is as good as random. Suppose for a moment that st ∈ {0, 1} and

that st is randomly assigned as it would be in a randomized control trial. In that case, the xt play

no role in achieving identification (though they improve efficiency) and the the impulse response

Rsy(h) = E[yt+h|st = 1]− E[yt+h|st = 0], could be directly estimated as:

R̂sy(h) =
∑T

t=h yt+hst

∑T
t=h st

− ∑T
t=h yt+h(1 − st)

∑T
t=h(1 − st)

; h = 0, 1, . . . , H . (40)

In fact, the previous expression can be estimated as a simple local projection: yt+h = µh + βhst + ut+h

where R̂sy(h) = β̂h.

In practice, st is usually not randomly assigned, but rather determined endogenously. Naturally,

the most direct approach is to include observable information, xt as right-hand side variables in a

typical LP, specifically,

yt+h = αh + βh st + γh xt + vt+h ; h = 0, 1, . . . , H .

As an example, note that in the context of a VAR DGP, the traditional Cholesky decomposition of

the reduced-form error covariance based on a Wold causal ordering of the variables in the VAR

has a direct correspondence to how such an assumption is implemented in an LP: one simply has

to add as additional controls the appropriate contemporaneous values of system variables into xt.

Specifically, in addition to lagged values of all the variables in the system, one should include the

contemporaneous values of the variables ordered first in the Cholesky causal chain. Asymptotically

these are equivalent: in large samples, both approaches (the Cholesky VAR and the analogous LP)

will recover the same impulse responses (Plagborg-Møller and Wolf, 2021).

29



8.2. Inverse propensity scores: LP-IPW and LP-IPWRA

However, the covariates xt may affect st non-linearly and this would in principle complicate matters

considerably—the specific type of nonlinearity is usually unknown. The applied micro literature has

solved this issue by reweighting the sample averages in Equation 40 using inverse propensity scores.

The use of the propensity score goes back to Horvitz and Thompson (1952) and Rosenbaum and

Rubin (1983). In economics, early references include Hirano, Imbens, and Ridder (2003) with the

first applications to local projections by Angrist, Jordà, and Kuersteiner (2016) and Jordà and Taylor

(2016), denoted LP-IPW.

So what is a propensity score? In the setting where st ∈ {0, 1}, it refers to pt = P(st = 1|xt),

which in practice can be obtained from a logit or probit first stage estimation.17 Reweighting

Equation 40 with the inverse of the propensity score leads to the following expression,

R̂sy(h) =
∑T

t=h yt+hst

∑T
t=h pt

− ∑T
t=h yt+h(1 − st)

∑T
t=h(1 − pt)

; h = 0, 1, . . . , H . (41)

When interventions are binary, as in our example, inverse propensity score weighting offers a flexible

alternative to achieving identification based on conditioning on observable covariates. Moreover, one

can build on this estimator by also including controls xt linearly on the right-hand side of the LP

(i.e., regression adjustment) and using weighted least squares based on the propensity score. We can

call this LP-IPWRA and it is a doubly-robust estimator. The literature on doubly-robust estimators is

quite extensive and we refer the reader to Jordà and Taylor (2016) for the appropriate references to

get started and for an example of application.

8.3. Traditional VAR identification schemes for local projections

We should note that VARs have had a 25-year running start over local projections when it comes to the

issue of identification. However, recent work by Plagborg-Møller and Wolf (2021) formally derives

the equivalence of VARs and local projections under some of the more traditional identification

approaches.

We have already commented on the implementation of Cholesky-type identification in LPs. The

right method here is simply to include the contemporaneous variables in the Wold causal order as

right-hand side variables in the LP. In this subsection we touch on two other popular approaches,

starting with identification through long-run restrictions, introduced by Blanchard and Quah (1989).

Using the same set-up as Blanchard and Quah (1989), Plagborg-Møller and Wolf (2021) show

that to implement the long-run identification in that paper one can follow a two step procedure.

Consider a bivariate set-up with GDP and the unemployment rate. First, based on the assumption

that movements of output in the long-run are only explained by supply shocks, one can estimate

17In turn, such a two-step estimator will require adjusting the calculation of the standard errors in the
second stage.
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a local projection of the long difference (for a large value of H chosen by the experimenter) of the

log of real gdp, say yt+H − yt−1 on ∆yt, and the unemployment rate, say Ut (and the lags of both as

additional covariates). Call βH the response coefficients associated with ∆yt and Ut in this LP. Then

the supply shock is essentially the linear combination st = β
y
H∆yt + βU

HUt. In the second step one

simply estimates the local projection using st as the impulse.

Plagborg-Møller and Wolf (2021) discuss other identification alternatives, such as identification

with sign restrictions. However, in general traditional methods suffer from the inability to test the

validity of the identification assumptions, and in the case of sign restrictions, inference can be quite

complicated as one usually only achieves set identification, not point identification.

8.4. Instrumental variables: LP-IV

Last but not least, identification of LPs via the use of instrumental variables is perhaps the most

intuitive approach. This is now an established method, referred to as LP-IV (since its first appearance

in Jordà, Schularick, and Taylor, 2015) and has found many uses in applied macroeconomics that

are too numerous to mention.

As is usually the case with instrumental variables, conditions must be satisfied. One will need a

relevance assumption (that is, the instrument is correlated with the endogenous variable, in this case

the intervention) and an exogeneity assumption (the instrument is uncorrelated with the residuals).

However, the latter is slightly different than in static settings, as Stock and Watson (2018) and

Plagborg-Møller and Wolf (2021) show and as we have already discussed in Section 7.1. Formally,

the assumptions one needs, as stated in Stock and Watson (2018), are those already stated in

Assumption 1 above, or for more general nonparametric settings, those as discussed in Rambachan

and Shephard (2019b).

Instrumental variable estimation of LPs offers another important advantage over VARs as

highlighted by Plagborg-Møller and Wolf (2022), which is that identification is achieved even in

non-invertible settings. Non-invertibility, loosely speaking, is a situation where the variables in a

system are determined by an even larger number of shocks. An example would be news shocks

about future technology, but there are many others in macroeconomics. In such a setting, structural

shocks cannot be recovered solely as a function of current and lagged values of the variables in the

system. As a result, VAR identification methods based on the covariance matrix of reduced-form

residuals will not work directly, which poses a challenge. These issues have been highlighted in, for

example Fernández-Villaverde, Rubio-Ramı́rez, Sargent, and Watson (2007), and more specifically

by Stock and Watson (2018) and Plagborg-Møller and Wolf (2022) when discussing invertibility in

the context of VARs and LPs. Recent developments to achieve identification in non-invertible VARs

have been proposed in, e.g., Chahrour and Jurado (2022).

31



9. Indirect inference: Impulse response matching estimators

In many settings, the structural parameters θ of an economic model can be expressed as functions

of some auxiliary parameters π that can be estimated more easily with an auxiliary model. An

example of such an approach are the impulse response matching estimators used in Rotemberg and

Woodford (1997); Christiano, Eichenbaum, and Evans (2005) and Iacoviello (2005).

Specifically, suppose that we can express θ = g(π) where, in particular, at the true value

θ0 = g(π0). If in addition, g(π) is locally identified and differentiable, and
√

T(π̂−π) → N(0, Ωπ),

to state the basic assumptions, then, the classical minimum distance problem

min
θ

(θ̂− g(θ))′WT(θ̂− g(θ)) ; dim(θ) = q < r = dim(θ) ,

with WT a weighting function, can be shown to deliver

√
T(θ̂− θ) → N(0, Ωθ) ; Ωθ = (G′Ω−1

π G)−1 ,

when setting WT = Ω−1
π , the optimal weighting matrix, and where G refers to the Jacobian of g with

respect to π (see, e.g., Newey and McFadden, 1986, for a careful statement of the assumptions). This

is a well known result with a long history in statistics and with many generalizations, including

empirical likelihood estimation, for example (see, e.g., Owen, 1988).

In this section we review several settings in which this principle can be put to work to estimate

traditional time series models and rational expectations or DSGE models models more generally; and

its relation to system projection IV methods (Lewis and Mertens, 2022) and to evaluate deviations

from optimal policy paths (Barnichon and Mesters, 2023).

9.1. Projection Minimum Distance

Jordà and Kozicki (2011) propose a simple approach via the method of Projection Minimum Distance

(PMD) to estimate time series models whose likelihoods would usually require maximization with

numerical optimization routines. The same principles can also be applied to estimate a wide range

of rational expectations models or even DSGE models (Castellanos and Cooper, 2023).

The following simple example illustrates the point. Suppose that our interest is in estimating the

reduced-form ARMA(1,1) model

yt = ρyt−1 + ϵt + θϵt−1 , (42)

where the constant is omitted for simplicity. Further, suppose that Rh is the impulse response

coefficient for h = 0 to H from a local projection of y onto itself (hence for clarity we omit

the subscripts in Rh). Let R̂ = (R̂0, . . . , R̂h, . . . , R̂H)
′ and let the corresponding estimate of the

covariance matrix be Ω̂R. Then ρ and θ can be estimated using the following two-step process:
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Projection Minimum Distance method

• Step 1: Obtain R̂ and Ω̂R as usual using, for example, GMM as shown previously.

• Step 2: Estimate the OLS pseudo-regression (to implement the minimum distance step):
R̂1
R̂2

...
R̂H


︸ ︷︷ ︸

R̂y

=


1 R̂0

0 R̂1
...
0 R̂H−1


︸ ︷︷ ︸

R̂x

(
ρ
θ

)
︸︷︷︸

δ

→ δ̂ = (R̂′
xR̂x)

−1(R̂′
xR̂y) .

where the variance-covariance matrix of the parameter estimates V(δ̂) can be obtained using
classical minimum distance results based on R̂y, R̂x and Ω̂R.

To see this method in practice, consider estimation of the following standard, generic rational

expectations expression (a good example of such an expression is the Phillips curve),

yt = Etwt+1θe +wtθc + ut , (43)

where wt is a vector of forcing variables. Note that extending this specification with more lags or

when a vector of left-hand side variables is considered, would be reasonably straightforward.

Shifting time and taking expectations on both sides of Equation 43, it is easy to see that

E[yt+h|st;xt] = E[wt+h+1|st;xt]θe + E[wt+h|st;xt]θc ; h = 0, 1, . . . , H . (44)

Taking the difference in expectations when st = s0 + 1 versus when st = s0, we have

Rsy(h) = Rsw(h + 1)θe +Rsw(h)θc ; h = 0, 1, . . . , H . (45)

If st is not identified, then as Barnichon and Mesters (2020) and more recently Lewis and Mertens

(2022) propose, one can use instrumental variables.18

More generally, for settings linear in the parameters such as Equation 43, and without detailing

all the usual assumptions for brevity, we can state the problem as follows,

R
H×1

= G
H×k

θ
k×1

. (46)

The corresponding minimum distance problem is therefore

min
θ

(R̂ − Ĝθ)′W(R̂ − Ĝθ) , (47)

where we may assume that
√

T(R̂ − R) → N(0, ΩR), which will be the case in most standard

18Lewis and Mertens (2022) also provide methods for inference with weak instruments.
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applications. The first order conditions are:

−Ĝ ′W(R̂ − Ĝθ) = 0 . (48)

Using a mean value expansion around the first order conditions, we have that

√
T(R̂ − Ĝθ) =

√
T(R̂ −R0)− G ′

W
√

T(θ̂− θ0) ; G, Ĝ → G0 . (49)

Thus, plugging this mean value expansion back into the first order conditions in Equation 48, one

can easily show that

Ωθ = (G ′WG)−1(G ′WΩRWG)(G ′WG)−1 , (50)

which simplifies to Ωθ = (G ′Ω−1
R G)−1 when choosing the optimal weighting matrix W = Ω−1

R . In

finite samples one would approximate G with Ĝ and ΩR with Ω̂R.

This approach, of course, does not require the user to use LPs to estimate the impulse responses

and their covariance matrix. Guerrón-Quintana, Inoue, and Kilian (2017) formally derive the

asymptotic properties of matching estimators based on VARs. Relatedly, Hall, Inoue, Nason, and

Rossi (2012) propose an information criterion to determine the optimal number of horizons of the

impulse response that balances fit with the increased uncertainty of responses estimated at far

horizons. The formula for their criterion is rather simple, given by

Ĥ = argminh∈{hmin,...,hmax} ln(|Ω̂θ |) + h
ln(

√
T/k)

(
√

T/k)
, (51)

where k is the truncation lag in the LP specification and Ωθ refers to the covariance matrix of the

structural parameters.

As an illustration of the practical application of the PMD method, we present an example based

on the estimation of the Phillips curve for the U.K. Here, Equation 45 takes the form

Rsπ(h) = Rsπ(h + 1)θπ +Rsx(h)θu ,

where πt is 12-month CPI inflation in log form and xt = ut − u∗
t is the unemployment gap relative

to the NAIRU, where the latter is extracted from a very low frequency bandpass filter. The

identified monetary policy innovation st is from Cloyne and Hürtgen (2016). Using PMD we find

θ̂π = 0.838(0.593) and θ̂x = −1.990(0.180). Figure 7 shows the two impulse responses used to

estimate these parameters, with panel (a) displaying the response of inflation to a monetary shock,

Rsπ(h), and panel (b) showing the response of the unemployment gap instead, Rsx(h). Panels (c)

and (d) show the partial scatters which correspond to how the parameters θ̂π and θ̂x are calculated.
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Figure 7: Using Projection Minimum Distance to estimate the Phillips curve for the U.K.
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Notes: Sample: 1975m1–2007m12. X denotes controls. See text.
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9.2. Optimal Policy Evaluation

Barnichon and Mesters (2023) offer a clever approach to evaluating policy around the optimal path

when policy is obtained as a linear rule from minimizing quadratic loss. Specifically, suppose the

policymaker is interested in minimizing deviations of inflation from target as well as deviations of

the unemployment rate from the natural rate, over a given horizon. Hence we can define

ηH
π,t

′

1×H
= [(Etπt+1 − π∗) . . . (Etπt+H − π∗)]′ , (52)

ηH
u,t

′

1×H
= [(Etut+1 − u∗) . . . (Etut+H − u∗)]′ , (53)

where πt and π∗ refer to inflation and its target; and ut and u∗ refer to the unemployment rate and

its natural rate, for example. Assume the policymaker’s goal is to minimize the quadratic loss given

by

min
s

L =
1
2

(
ηH

π,t
′

ηH
u,t

′)
W

(
ηH

π,t

ηH
u,t

)
, (54)

where W is a weighting matrix that may reflect how the policymaker weighs deviations in one

period relative to others, and minimization is based on choosing the policy variable s.

Notice that linearity allows us to write

∂ηH
π,t

∂s
= RH

sπ;
∂ηH

u,t

∂s
= RH

su , (55)

where RH
sπ and RH

su are the responses of inflation and the unemployment rate to a policy shock.

Hence, the first order conditions, ∇L̂(ŝ) = 0 are

∇L̂(ŝ) = (RH
sπ

′ RH
su

′
)︸ ︷︷ ︸

R′

W

(
ηH

π,t

ηH
u,t

)
︸ ︷︷ ︸

η

= R′Wη = 0 . (56)

Now consider a mean value expansion around the optimal ŝ calculated in a finite sample given by

∇L̂(ŝ)︸ ︷︷ ︸
=0 by F.O.C.

= ∇L̂(s0)︸ ︷︷ ︸
=R0Wη0

+∇2L̂(s)︸ ︷︷ ︸
=R′WR

(ŝ − s0) ; s ∈ [ŝ, s0] , ŝ → s0 , (57)

where s0 is the population optimal value of policy and hence we may write δ̂ = ŝ − s0 as the change

in current policy that would get us closer to the true optimal policy. In the linear-quadratic setting

that we have entertained so far, note that R′
WR → R′

0WR0 and, hence,

δ̂ = −(R′
0WR0)

−1(R′
0Wη0) . (58)
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Using typical minimum distance results, and denoting the covariance matrix of R̂ as ΣR, the variance

of δ̂ is

V(δ̂) = (R′
0WR0)

−1(R′
0WΣRWR0)(R′

0WR0)
−1 , (59)

which simplifies to V(δ̂) = (R′
0Σ−1

R R0)−1 in the special case where the policymaker chooses

W = Σ−1
R . In practice, of course, all the population items can be substituted with their finite sample

estimates. Thus, R̂ and η̂ can be obtained by local projections, for example, or from a VAR.

Equation 58 and Equation 59 thus allow one to test, for example, the null hypothesis that policy

is approximately at its optimal level, i.e., H0 : δ = 0. When this hypothesis is rejected, δ̂ provides

the policymaker the direction in which to modify policy toward the optimal value. Naturally, the

responses embedded in R̂ need to be estimated causally, say, using an LP-IV or other identification

approach, and hence a natural estimate of ΣR can be easily obtained with GMM as shown in

Section 7.1. Importantly, note that nowhere in the discussion did we have to explicitly write down

the policy rule.

10. Counterfactual paths

As we discussed in the introduction, an impulse response is a counterfactual comparison of means

based on switching on and off a policy variable in the initial period. For example, the response of

the unemployment rate presented in panel (b) of Figure 6 shows what such a response looks like

based on a Romer and Romer (2004) shock. The response reflects the effect of the initial shock on

the unemployment rate, as well as the effect of the shock on the monetary policy variable (say the

federal funds rate) over time, and how it feeds back into the unemployment response. Thus we may

ask, what would happen to the unemployment rate response if the policy path itself were to deviate

from its usual pattern? This is the question that we try to answer in this section.

The Lucas critique (Lucas, 1976) suggests that such an experiment would be fraught. A deviation

from the usual policy path would result in agents modifying their behavior accordingly, which

would shift the latent economic environment and hence invalidate the analysis. In order to try to

avoid this well-known problem, the approach that we follow in this section is similar to the modest
policy interventions studied by Leeper and Zha (2003). That paper entertains modifications of the

policy path that are sufficiently modest that they are unlikely to trigger a substantial revision in the

agents’ expectations and thus a transformation of the economic environment. We will follow the

same intuition and therefore, the response modified by these modest interventions is probably best

interpreted as a derivative.

Under relatively general conditions, Section 7.1 above showed that impulse responses estimated

by local projections are asymptotically normal with a given variance-covariance matrix. Denote

with βu and βr the H × 1 response of the unemployment rate and the funds rate respectively to a

monetary shock.
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Hence, we may write (
β̂u

β̂r

)
→ N

((
βu

βr

)
;

(
Ωuu Ωur

Ωru Ωrr

))
. (60)

Denote by βc
r a counterfactual response of the funds rate. Based on the rules of the multivariate

normal distribution, we can then calculate the unemployment rate response conditional on βc
r as

follows,

βc
u = β̂u + ΩurΩ−1

rr (βc
r − β̂r) , (61)

Ωc
uu = Ωuu − ΩurΩ−1

rr Ωru . (62)

Assessing whether βc
r represents a modest enough deviation from β̂r can be accomplished using

the Mahalanobis distance, which given the assumptions maintained will have an approximate χ2

distribution. That is,

M = (βc
r − β̂r)

′Ω−1
rr (βc

r − β̂r) → χ2
H . (63)

Thus, when βc
r is relatively close to β̂r, the statistic M will be small and the null that the proposed

counterfactual path βc
r is indistinguishable from βr, will not be rejected based on a χ2

H metric. We

will interpret failure to reject the null as evidence in favor of a modest couterfactual.

As an example, Figure 8 shows how this approach can be used in practice. Panel (a) of the figure

replicates panel (b) of Figure 6. It shows the response of the unemployment rate estimated using

LP-IV and using a Gaussian basis function (GBF) approximation.

We may not have strong views on the value of the individual coefficients of an impulse response.

However, the coefficients of the GBF have a nice interpretation that we can exploit for our purposes.

These coefficients are also normally distributed so that we can apply the same calculations as

in Equation 61. Specifically, let βu = ϕ(au, bu, cu) where ϕ denotes the GBF and au, bu, cu are its

corresponding coefficients for the smoothed unemployment rate response. Similarly we write

βr = ϕ(ar, br, cr). Now we can use Equation 61 to determine βc
u = ϕ(ac

u, bc
u, cc

u) based on some

counterfactual assumption on the path for βr.

As an example, in panel (b) of Figure 8 we consider a counterfactual in which the response

of the federal funds rate is approximated with a Gaussian basis function with parameters ar =

2.17 (0.04); br = 4.66 (0.12); and cr = 6.10 (0.14), where the numbers in parenthesis are standard

errors. To keep things simple, we then experiment with a counterfactual path for the funds rate

where we reduce the parameter br by one standard deviation. Recall that this is the parameter

associated with the timing of the peak response. Thus, by reducing br, we move the peak funds

response 1 standard deviation earlier. This policy experiment results in the counterfactual path for

the unemployment rate response displayed as a dashed green line in panel (b) of Figure 8.
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Figure 8: The response of the unemployment rate to a counterfactual funds rate response

(a) Raw LP vs. GBF approximation
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(b) GBF response vs. counterfactual
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Notes: Sample: 1985m1–2000m12. Response of the unemployment rate and the federal funds rate to a shock
in the latter, instrumented with a Romer and Romer (2004) monetary shock. Both responses estimated using
a Gaussian basis function using GMM as shown in Section 5. See text.

The figure repeats the original GBF response estimate of the unemployment rate (as a solid line)

along with its counterfactual response (as a dashed line). As expected, the counterfactual experiment

results in the unemployment rate being higher earlier on, and peaking slightly sooner, before

returning back to 0. Here, the Mahalanobis distance statistic M has a p-value of 0.08, indicating

that this is a borderline modest intervention and thus the numerical results should be interpreted

with some caution.

11. State-dependent responses: A decomposition

LPs are well suited to the analysis of state-dependent impulse responses, that is where the impulse

response may be allowed to vary across regimes determined by one or more state variables.

Stratification For example, many studies have examined whether the impact of a monetary policy

shock depends on the boom-bust or recession-expansion state of the economy (e.g., Tenreyro and

Thwaites, 2016; Angrist, Jordà, and Kuersteiner, 2016; Jordà, Singh, and Taylor, 2024). Likewise,

another literature focuses on whether the impact of a fiscal policy shock is also dependent on the

state of the cycle (e.g., Auerbach and Gorodnichenko, 2012a; Jordà and Taylor, 2016; Ramey and

Zubairy, 2018).
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As an example of how one can implement stratification, let Dt−r be a binary indicator variable

for some measure of the state of the economy at time t − r for r > 0 prior to intervention. In

principle, if the state is determined prior to intervention and the intervention itself is not influenced

by the state or other factors (i.e., is as good as if randomly determined), then one can, for example,

estimate two long-difference LPs,

yt+h − yt−1 = α
j
h + β

j
h ∆st + γ

j
h ∆xt + vt+h ; Dt−r = j ∈ {0, 1} , r > 0 , h = 0, 1, . . . , H , (64)

where the controls ∆xt might include lag differences of the outcome and lags of the intervention.

Here, βi
h would capture the coefficients of the response in regime j = 0, 1.

Why is this approach needed? When impulse responses are state-dependent, estimating a

traditional local projection by conditioning on past information without also conditioning on the

state, will mix up the state-specific responses to yield only an overall average response. The correct

approach is to condition on the state as well, and to estimate a state-dependent LP. In general, this

will require the full set of interactions of the state variable with all controls for past information.

How should one interpret a state-dependent impulse response? The answer depends on the

method used. In a state-dependent VAR, if one derives the response as usual by using state-specific

VAR parameters and deriving the response as usual, the implicit assumption is that the economy

will remain in that particular state forever into the future. This is usually unrealistic. In practice, the

economy may, and likely will, switch states in the future and may do so more than once. Thus, the

correct impulse response given the state will usually require simulation methods to then average

across all possible future trajectories that allow the state to shift as time goes on.

LPs do not require such simulations. By construction, conditional on today’s state, LPs directly

estimate the average response across all possible trajectories that the economy may follow in the

future, including possible future shifts in the state, given today’s state and conditional on controls.

As an illustration, following the earlier Figure 2 based on Jordà and Taylor (2016), in Figure 9 we

present an example. Recall that the outcome is real GDP and the policy shock is a fiscal consolidation,

for an OECD annual panel from 1978 to 2019 sample based on the data constructed by Guajardo,

Leigh, and Pescatori (2014) and updated to 2019. The stratification variable Dt takes the value

1 in a boom (or 0 in a slump), defined, respectively, as periods when the HP-detrended cyclical

component of output is positive (or negative). Critically, a key assumption is that consolidations are

not influenced by whether the economy is in a boom or a slump.

The figure shows updated results comparable to the main findings in Jordà and Taylor (2016).

Fiscal consolidations are contractionary over horizon years 0 to 4, in both split samples. Tests of

both the average response and the joint test of non-zero response indicate that the differences are

statistically significant. However, the output response is much larger when fiscal consolidations are

implemented during slumps, as compared to booms. The estimated slump response is imprecisely

estimated, but the result becomes clearer when the average response 1
H ∑4

0 βh is calculated, which

amounts to −1.78 in slumps and −0.80 in booms. When the estimated multipliers are similarly
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Figure 9: State-dependent cumulative fiscal impulse response Ry f (h)
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(b) slumpt−1 = 1
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Notes: Outcome yit is log real GDP per capita from Jordà and Taylor (2016), and f denotes a fiscal shock, a
treatment ∆sit is dCAPB from Guajardo, Leigh, and Pescatori (2014), updated to 2019, instrument zit is GLP2
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the joint test.

calculated with stratification (not shown) they are also negative, and twice as large in slumps as

compared to booms.

Lastly, note that difficulties arise if the state includes current information (unlike Equation 64).

Then, policy interventions are influenced by the current state and vice versa. For example, interest

rates are set low in slumps and high in booms so a naı̈ve stratification could result in confounding,

e.g., a finding of weak responses to monetary shocks. (This problem might be less severe for

fiscal policy, which may react with a lag). Ideally, both the policy intervention and state would be

determined exogenously in a quasi-experiment, where one does not influence the other. Thus we

may require instruments for both the intervention and the state. A similar point has been raised by

Gonçalves, Herrera, Kilian, and Pesavento (2024); they show that large interventions are unlikely to

represent the true population response and that a conservative interpretation is to view the estimated

responses as derivatives, i.e., what would happen with an infinitesimally small intervention.

41



Heterogeneity Linearity, whether in the context of VARs or LPs, makes complex models tractable,

but the restrictions that it imposes are sometimes forbidding. We saw earlier that linearity means

that the sign of the intervention is irrelevant as it simply flips the sign of the impulse response. It

also means that the size (or dose) of the intervention simply scales the response proportionately, but

does not change its shape—a 50 basis points (bps) change in interest rates would be expected to

have twice the impact of a 25 bps change. And the state of the world when the intervention takes

place has no effect on the response—an interest rate hike during a boom would be expected to cool

the economy as during a bust. These and other features of linearly estimated responses seem too

restrictive and our fiscal policy example seems to bear this out.

Abandoning linearity usually comes at a steep cost in complexity, at least when working with

VARs. However, since LPs are a single equation method, these costs tend to be lower. In fact, a

great degree of heterogeneity can be achieved with specifications that remain linear in parameters

and hence easy to estimate with standard methods. In this section we rely on recent work by

Cloyne, Jordà, and Taylor (2023) to explain some of these extensions and their interpretation. We

refer the reader to that paper for the in-depth exposition of what follows. More complex forms

of nonlinearities, of course, will require nonlinear estimation methods and appropriate care in

computing the impulse response as discussed later in Section 12.

Consider a departure from the binary example discussed earlier, where the economy can be

either in a boom or a slump. Instead, think of the economy as being in a continuum of states. There

are a number of ways of approaching this problem, perhaps the simplest one is where the state of

the economy is determined by the vector xt of controls. The previous boom/slump example would

be a special case where, say, an indicator variable xt ∈ {0, 1} determines the state. Yet another

approach would be to use a factor variable that summarizes the state of the economy as a function

of a vector of variables.

We may therefore be interested in comparing the responses resulting from moving from, say

xt = x0 (such as, for example, x0 = x), where as before, xt denotes lags of the outcome, the

intervention, and other exogenous and pre-determined variables. The state of interest is some

deviation δx from this equilibrium state. It may be easier to think of a setting where all entries

in δx are zero, except for one variable of interest characterizing the state though this is, of course,

not necessary. As before, let st denote the policy variable that will be shifted from s0 to s0 + δs (in

non-linear models, the effect depends on where it is evaluated). This is a scenario similar to that in

Auerbach and Gorodnichenko (2012b,a) and Tenreyro and Thwaites (2016), for example.

The researcher is thus usually interested in evaluating the effectiveness of an intervention in a

given state, via

Rsy|x(h) = E[yt+h|st = s0 + δs;xt = x0 + δx]− E[yt+h|st = s0;xt = x0 + δx], (65)

where δs is the only difference between these two expectations. This response can be further

decomposed by adding and subtracting E[yt+h|st = s0 + δs;xt = x0] and E[yt+h|st = s0;xt = x0].
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Simple manipulations allow us to decompose Equation 65 into

Rsy|x(h) = E[yt+h|st = s0 + δs;xt = x0 + δx]− E[yt+h|st = s0 + δs;xt = x0]︸ ︷︷ ︸
Rxy|s=s0+δs (h)

− E[yt+h|st = s0;xt = x0 + δx]− E[yt+h|st = s0;xt = x0]︸ ︷︷ ︸
Rxy|s=s0

(h)

+ E[yt+h|st = s0 + δs;xt = x0]− E[yt+h|st = s0;xt = x0]︸ ︷︷ ︸
Rsy|x=x0

(h)

. (66)

What do we learn from this decomposition? First, the effect of a policy intervention that happens

when the state is at x0 + δx reflects components that seemingly have nothing to do with the

intervention, as is captured by Rxy|s=s0+δs(h) and Rxy|s=s0
(h). We say seemingly because, although

the only element in the conditioning information set that is shifting is xt, the state is related to

the policy variable st in general. For example, lower interest rates are generally an endogenous

response to a weak economy. Thus, the decomposition highlights that identification requires not

only exogenous variation in st but also in xt (or at least, in the subset of variables in xt implicated

in determining the state).

Based on these simple derivations Cloyne, Jordà, and Taylor (2023) propose the following

extension to the usual LP linear specification,

yt+h = µ0h + βh(st − s0) + γh(xt − x0)︸ ︷︷ ︸
usual local projection

+ θh(st − s0)(xt − x0)︸ ︷︷ ︸
extension

+ vt+h ;

h = 0, 1, . . . , H; t = h, . . . , T , (67)

where note that a common choice would be to set s0 = s and x0 = x though this is done for

convenience and clearly is not the only normalization one could arrange. Note that Equation 67 is

still linear in parameters and therefore easy to estimate.

Going back to the decomposition of Equation 66, note the terms involving a shift in the state,

Rxy|s=s0+δs(h)−Rxy|s=s0
(h) = θhδsδx, whereas the term directly related to the policy intervention,

Rsy|x=x0
(h) = βhδs, which is the usual impulse response coefficient. The sum of the two is the

state-dependent response where now clearly the term θhδsδx will attenuate/amplify the original

response βhδs depending on the sign of θh. Cloyne, Jordà, and Taylor (2023) call Rsy|x=x0
(h) = βhδs

the direct effect of the intervention on the outcome and the term Rxy|s=s0+δs(h)−Rxy|s=s0
(h) = θhδsδx,

the indirect effect. This is because the latter captures how intervention shifts the way covariates affect

the outcome.

This last term plays an important role. First, compared to the usual stratification of impulse

responses based on a given state variable, Equation 67 suggests that such specifications may incur an

omitted variable bias—stratification could also be required of other elements in xt. Second, as Fortin,

Lemieux, and Firpo (2011) explain, the decomposition in Equation 67 for static regressions (also know
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as the Kitagawa-Oaxaca-Blinder19 decomposition) is a partial equilibrium decomposition. In other

words, the covariates themselves are correlated and hence not usually identified, an observation also

made in Cloyne, Jordà, and Taylor (2023) and later by Gonçalves, Herrera, Kilian, and Pesavento

(2024), as we previously discussed. Thus, the second lesson is that one requires identification not

only for st, but also for the elements of xt whose stratification one is interested in characterizing.

Time-varying responses However, there is another interesting feature of Equation 67. As long

as θh ̸= 0, then the impulse response will vary depending on the value that xt takes in relation

to x0. That is, the impulse response is time-varying. Previous papers have reported time-varying

responses (e.g., Cogley and Sargent, 2005; Primiceri, 2005), however, these are usually based on

low-dimensional time-varying VARs where the parameters of the model are allowed to follow a

latent unit root process. Estimation is done using Bayesian methods. Importantly, time variation in

the response is linked to the latent drift in the parameters though direct economic interpretation

of what caused the drift is indirect, by looking at how the drift correlates with other economic

aggregates. In contrast, Equation 67 ties the time-variation of the responses directly to the state of

the economy characterized by the value of xt at each point in the sample, which may be very useful.

In practice what this means is that one can answer the question: How effective is a policy inter-

vention likely to be given the current state of the economy characterized by observable information?

Moreover, this question can be answered without specifically giving a label to what that state is.

This seems to be a question of first order importance for policymakers. We postpone discussion

of how instruments can be used to achieve identification to Section 12. In that section, we discuss

nonlinearities more broadly and that seems a better place for such a discussion.

For now, we provide a simple simulation exercise to illustrate the main features of the Cloyne,

Jordà, and Taylor (2023) approach. Assume that there are two exogenous variables of interest, st will

be the primary intervention of interest whereas xt will be a secondary exogenous variable. You can

think of it as a secondary intervention, such as when one examines fiscal policy given monetary

policy. The DGP is as follows,
st = 0.75 st−1 + vs,t ,

xt = 0.75 xt−1 + vx,t ,

yt = 0.75 yt−1 + γxt−1 + I(|st| > 1) (βst + θxtst) + vy,t ;

vi,t ∼ N(0, 1) for i = y, s, x . (68)

Hence, st and xt are exogenous by construction. We activate the primary treatment st only when

|st| > 1 as indicated by the notation I(|st| > 1). We assume that the internal propagation dynamics

captured by yt−1 remain the same whether or not |st| > 1.

For the simulation, we set γ = 0.75 and β = θ = 0.5 to keep the simulation simple. We initialize

the data with 500 burn-in replications that we disregard and study instead the subsequent 500

19See Kitagawa (1955); Blinder (1973); Oaxaca (1973).
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Figure 10: Variation in the impulse response due to secondary treatment
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Notes: Data simulated from the model in Equation 68. Panel (a) shows the coefficients for the impulse response
R(h) at horizons h = 0, 2, 4, 6 for the first 50 observations in the sample. Panel (b) shows the average response
R(h) over the sample (along with two standard error bands) as well as the attenuation/amplification of the
response when the secondary treatment takes on values -2, -1, 0, 1, 2. See text.

observations. Then we estimate LPs as described in Equation 67. The results are displayed in

Figure 10.

The figure is arranged in two panels. In panel (a) we show the response coefficients at horizons

0, 2, 4, 6 for the first 100 observations in the sample to highlight the time-variation generated by

the interaction of the primary and secondary treatment variables. Even with this simple set-up,

the effect on impact can fluctuate considerably: it is mostly positive for the first 50 observations,

mostly negative for the next 25, before turning positive again. In panel (b) we show the average

impulse response (which is the figure shown in most analyses) along with the attenuation (in

purple)/amplification (in blue) generated by xt for xt = −2,−1, 1, 2. The response on average begins

around 0.75 on impact and by period 12 it has died off to zero. When xt = 2 the response on impact

can be as large as 2 whereas when xt = −2 the response on impact can be as low as about −0.75.
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12. Nonlinearities

Nonlinearities are inherently difficult to handle as the range of possible specifications is vast. In

practice, nonlinear specifications are usually motivated by specific objectives. Generally speaking,

nonlinearities are difficult to implement in a VAR. The parametric load increases very rapidly, and

nonlinear estimation methods quickly become cumbersome. LPs help alleviate this problem by

virtue of being single equation methods. That said, nonlinearities also require the practitioner to

form assumptions about the DGP to interpret the coefficients. The reader is directed to the work of

Rambachan and Shephard (2019a,b) for more details.

In this section we review a general observation about non-linear LPs and highlight a few of

the studies from the literature. Illustrating the main issues can be done with a simple motivating

example. Hence consider the following nonlinear (separable) local projection

yt+h = µh(st; xt; θ) + vt+h ; h = 0, 1, . . . , H . (69)

The corresponding impulse response will be

Rsy(h, s0, δ; xt) = µh(st = s0 + δ; xt; θ)− µh(st = s0; xt; θ) . (70)

Several features are worth remarking. First, note that the functional form µh( . ) is allowed to vary for

each horizon h. Second, note that the response function R not only depends on h. It now depends

on the benchmark counterfactual, st = s0, on the size and sign of the intervention, δ, and the value

of the conditioning set xt. These are features we observed earlier when discussing stratification.

Moreover, care must be used when using instrumental variables to achieve identification, as we

foreshadowed in the previous section. As is well known (see, e.g., Newey, 1990), even if we have an

instrument for st, it is desirable to instrument any nonlinear transformation of st instead of using a

first stage regression of st on zt. Intuitively, the moment conditions that we want to exploit are

E [(yt+h − µh(st; xt; θ))zt] = 0 ; h = 0, 1, . . . , H . (71)

Simply put, Jensen’s inequality would advise against running a first stage regression of st on zt and

xt and then estimating

yt+h = µh(ŝt; xt; θ) + vt+h ; h = 0, 1, , . . . , H .

Now, for example, consider the following local projection

yt+h = β1hst + β2hs2
t + β3hst xt + γhxt + vt+h ; h = 0, 1, . . . , H . (72)

The corresponding response is Rsy(h, s0, δ; xt) = β1 + β2(δ2 + 2s0δ) + β3δxt. This response is no

longer symmetric (since δ2 is always positive); it also varies with the size of the intervention, δ; it
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further depends on where the response is benchmarked, st = s0; and lastly it will vary depending

on the value of the control, xt. However, it is worth noting that this particular specification is still

linear in the parameters, which means that it can be estimated by simple least-squares methods.

Recent applications of nonlinear local projections are numerous, indicating the usefulness of this

technique: for example, estimation of quantile local projections (Linnemann and Winkler, 2016;

Adrian, Grinberg, Liang, Malik, and Yu, 2022; Jordà, Kornejew, Schularick, and Taylor, 2022); and

local projections when the outcome variable is binary (Drehmann, Patton, and Sorensen, 2007;

Barattieri and Cacciatore, 2023), to cite a few.

Finally, going back to our discussion of IV estimation, suppose that an instrument zt for

st is available. Instead of using zt in a first stage regression for st, the correct approach is to

estimate Equation 72 by using as instruments zt, z2
t and zt xt, perhaps in addition to other nonlinear

transformations (see, e.g., Newey, 1990). These could then be use to construct the moment conditions

in Equation 71.

13. Panel data

Increasingly, empirical economic analysis relies on longitudinal or panel data. Local projections are

well-suited to handle this type of data. Estimating a single panel regression is far more convenient

than estimating a system of panel regressions, as would be necessary with a vector autoregression.

In addition to having potentially more observations with which to increase the precision of the

response estimates, panel data will have implications for inference and open up additional methods

of identification. Thus, a typical panel data local projection could be specified as

yit+h = µih + δth + βhsit + γhxit + vit+h , (73)

where the main differences versus earlier specifications are the presence of individual and time-fixed

effects, and a sample of i = 1, . . . , N individual units observed over t = 1, . . . , T time periods.

Specification, identification and analysis using local projections along the lines discussed in

previous sections remain largely the same and many of the same methods are directly applicable to

panel data. There is, however, two areas worth discussing in more detail: inference and difference-

in-differences identification.

Inference In typical panel applications, inference depends in a fundamental manner on the

dimensions N and T of the panel. In addition to the moving-average structure of the residuals in a

local projection, it is natural to consider individual-level correlation across individual units. Recent

developments in this area, specially regarding clustered standard errors are worth discussing.

At a basic level and taking a similar approach to that originally proposed in Jordà (2005), one

could adjust for heteroscedasticity and autocorrelation using Driscoll-Kraay robust standard errors
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(Driscoll and Kraay, 1998), i.e., the direct analog of Newey-West standard errors for panels.20 The

asymptotic justification for this method relies on T → ∞ with N fixed, or N growing at a slower

rate than T.

A cluster-robust approach could be used in situations where N → ∞ with T fixed to correct for

autocorrelation. However, if T is relatively small, a recommended correction for heteroscedasticity is

to use the wild cluster bootstrap (see Cameron, Gelbach, and Miller, 2008; Canay, Santos, and Shaikh,

2021; Roodman, Nielsen, MacKinnon, and Webb, 2019).21 Importantly, note that the asymptotic

distribution of the response coefficient in panels with large N relative to T will be dominated by the

cross-sectional dimension, which will greatly remove concerns about distortions generated when

there are roots near unity.

Difference-in-differences estimation A popular identification approach when selection into

treatment is endogenously determined—but based on characteristics that are time-invariant—is

difference-in-difference (DiD) estimation. In the simplest setting, with two periods and two groups

(one of which is treated and the other one which is not) and under suitable conditions (e.g. no
anticipation of treatment selection and parallel trends, i.e., treated and control units would have

evolved along their pre-treatment trends absent treatment), the DiD estimator identifies the average
treatment effect on the treated.

The literature has, however, evolved from this simple setting—usually based on the well-known

two-way fixed effects (TWFE) estimator—to include more complex situations. This includes cases

where more than one group of individuals receives treatment and this treatment is perhaps not

administered at the same time (i.e., it is staggered). Moreover, treatment effects may vary across

groups depending on when treatment is received (i.e., they are heterogeneous) and the effects may

also change over time after treatment (i.e., they are dynamic). These extensions have generated an

extensive new literature, well summarized in the surveys by Roth, Sant’Anna, Bilinski, and Poe

(2023) and De Chaisemartin and d’Haultfoeuille (2023), for example.

What might be the connection between LPs and DiD? It is very deep. Dube, Girardi, Jordà, and

Taylor (2023) show that most of the extensions to the basic two-period, two groups setting can be

accommodated with a simple modification of an LP estimator under standard assumptions. In

particular, using similar notation as before, let yit denote the outcome variable, let the treatment

indicator sit equal 0 before treatment, 1 when treatment is administered and thereafter (i.e., treatment

is an absorbing state), and let xit denote a vector of covariates. That is, here, entering treatment is

measured by ∆sit.

20In STATA this can be implemented with the command xtscc. The command allows one to select the
maximum lag considered, the default option being set at m(T) = ⌊4(T ÷ 100)2/9⌋.

21This type of bootstrap can be implemented in STATA with the user supplied command boottest. We
thank Colin Cameron for useful comments on this section.
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Hence the LP-DiD estimator of Dube, Girardi, Jordà, and Taylor (2023) can be expressed as

yi,t+h − yi,t−1 = δth + βh ∆sit +
p

∑
j=1

ρjh ∆yi,t−j + γh xit + vi,t+h , (74)

where δth are time fixed-effects (individual fixed effects are absorbed through the long differencing)

and where—crucially—the estimation sample is restricted to observations that correspond to either

∆sit = 1 (newly treated units), or si,t+h = 0 (not yet treated units) to ensure clean controls, that is, to

avoid comparisons between newly treated units and previously treated units. Dube, Girardi, Jordà,

and Taylor (2023) show that many of the estimators proposed in the DiD literature and reviewed in

the surveys by Roth, Sant’Anna, Bilinski, and Poe (2023) and De Chaisemartin and d’Haultfoeuille

(2023) will fit into this convenient regression framework.

The key advantage of LP-DiD relative to panel distributed lag specifications rests on the clean

control condition. When a unit enters treatment, it is no longer a valid control for subsequently

treated units. In distributed lag specifications, one has to explore algorithmically all valid pairwise

comparisons of treated and control units and recent papers in the DiD literature do just that.

However, since LPs use forward looking variables, imposing the clean control condition is trivial, as

we have seen. Relative to the rest of the literature, one can then rely directly on regression methods

to calculate the response coefficients of interest, which will be a variance-weighted average of the

treatment effects for each group (though other user-chosen weights are trivial to implement).22

In contrast, algorithmic methods based on distributed lag regression generally compute equally-

weighted averages. Once again we are confronted with a bias-variance trade-off though in this case,

the shoe is on the other foot.

14. Concluding remarks

In this review we tried to cover the most important topics in the rapidly evolving field of local

projections. Inevitably, given space constraints, we have had to omit or skim over many new and

ongoing areas of research likely to come to fruition in coming years. Our emphasis has been on the

main ideas so that researchers can follow best practices. Just as important, we hope to have helped

researchers understand how best to adapt the local projections method to their research needs.

An important takeaway from our review should be that local projections help bridge the divide

between current best practices in applied microeconomics, and standard time series methods in

macroeconomics. We hope to have highlighted the many points of commonality between the two

traditions—in both univariate and panel data settings—and how each can benefit the other.

Counterfactual statements about the consequences of interventions are central to applied research

and policymaking. Statistics related to such counterfactuals (such as differences in means, differences

in quantiles, multipliers, and the like), can be constructed easily using local projections. Central to

22Code to implement LP-DiD in STATA can be found here: https://github.com/danielegirardi/lpdid.
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computing such statistics is identifying the causal channels at work. Though local projections per se

do not solve the identification riddle, they incorporate instrumental variable estimation methods

naturally, with extensions to nonlinear models, and they provide a decomposition of the indirect

channels by which interventions affect outcomes.

Inference occupies a central role in any statistical analysis. Local projections require some degree

of care when constructing inference, but once the main issues are understood, designing appropriate

inferential procedures is straightforward. Our goal has been to show that local projections are a very

flexible yet simple method to investigate dynamic causal properties of the data that have bearing on

the problems economists want to investigate.

Local projections offer advantages and simplicity in many respects. But, as highlighted in the

introduction and throughout the text, we hope to have provided guidance on how best to implement

local projections, leaving the researcher to decide how best to approach individual scenarios given

the context and the merits of the method.
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Gonçalves, Sı́lvia, and Lutz Kilian. 2004. Bootstrapping autoregressions with conditional het-
eroskedasticity of unknown form. Journal of Econometrics 123(1): 89–120.

Guajardo, Jaime, Daniel Leigh, and Andrea Pescatori. 2014. Expansionary Austerity? International
Evidence. Journal of the European Economic Association 12(4): 949–968.

Guerrón-Quintana, Pablo, Atsushi Inoue, and Lutz Kilian. 2017. Impulse response matching
estimators for DSGE models. Journal of Econometrics 196(1): 144–155.

Hall, Alastair R., Atsushi Inoue, James M. Nason, and Barbara Rossi. 2012. Information criteria for
impulse response function matching estimation of DSGE models. Journal of Econometrics 170(2):
499–518.

Hamilton, James D. 1994a. State-space models. In Handbook of Econometrics, edited by Robert F.
Engle and Daniel L. McFadden, volume 4, chapter 50, 3039–3080. Amsterdam: Elsevier.

Hamilton, James D. 1994b. Time Series Analysis. Princeton, N.J.: Princeton University Press.

Harvey, Andrew. 1991. Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge:
Cambridge University Press.

Herbst, Edward, and Benjamin K. Johannsen. 2024. Bias in Local Projections. Journal of Econometrics
240(105655).

Hirano, Keisuke, Guido W. Imbens, and Geert Ridder. 2003. Efficient estimation of average treatment
effects using the estimated propensity score. Econometrica 71(4): 1161–1189.

Horvitz, Daniel G., and Donovan J. Thompson. 1952. A Generalization of Sampling Without
Replacement From a Finite Universe. Journal of the American Statistical Association 47(260): 663–685.

Iacoviello, Matteo. 2005. House prices, borrowing constraints, and monetary policy in the business
cycle. American Economic Review 95(3): 739–764.
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Montiel-Olea, José Luis, and Mikkel Plagborg-Møller. 2019. Simultaneous Confidence Bands: Theory,
Implementation, and an Application to SVARs. Journal of Applied Econometrics 34(1): 1–17.
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