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Abstract

Inference for impulse responses estimated with local projections presents interesting
challenges and opportunities. Analysts typically want to assess the precision of individ-
ual estimates, explore the dynamic evolution of the response over particular regions,
and generally determine whether the impulse generates a response that is any different
from the null of no effect. Each of these goals requires a different approach to inference.
In this article, we provide an overview of results that have appeared in the literature in
the past 20 years along with some new procedures that we introduce here.
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1. Introduction

Impulse responses are often used to characterize dynamic systems. When the analyst wants to

remain agnostic about the data generating process (DGP), impulse responses are often estimated

using the method of local projections proposed by Jordà (2005) or LPs for short. LPs consist of

projecting future outcome variables on current and past information on the intervention (or impulse),

the outcome and other exogenous variables. In other words, they are simple regressions with a

particular dynamic error structure.

This article discusses how to conduct inference for LPs with an emphasis on general principles.

Relative to vector autoregressions (VARs), LPs generally have lower bias but higher variance though

in infinite samples, when the lag structure grows with the sample, both methods generate the same

impulse response and similar parameter estimation uncertainty (see, e.g. Plagborg-Møller & Wolf,

2021; Xu, 2023). We organize our discussion around three main topics: (1) point-wise inference; (2)

simultaneous inference; and (3) significance.

Point-wise inference, by far the most popular, refers to the uncertainty with which individual

parameters of the impulse response are estimated. It is presented graphically by means of error

bands. Simultaneous inference refers to the uncertainty about sets of impulse response coefficients.

It can be presented graphically as error bounds that accommodate families of hypotheses. Because

these bounds are generally wider than error bands, practitioners do not generally show them. Both

point-wise and simultaneous inference are based on the Wald principle.

In this paper, we introduce a new concept: significance bands. These bands refer to the null

hypothesis that the impulse does not generate a response, or in the parlance of experiments, that the

policy intervention has no effect. The Lagrange-Multiplier (LM) principle considerably simplifies the

construction of significance bands, which are a useful complement to the practice of presenting error

bands since many researchers are often concerned about the absence of a response to an impulse.

We set the stage with a brief introduction to LPs to highlight where the properties of the estimated

response come from and how they affect inference. Next, we discuss point-wise inference. We

highlight several recent developments in the literature, including feasible generalized least-squares

methods (LP-FGLS), lag-augmentation (LP-LA), and with a brief mention of Bayesian inference

(BLP).

Thinking about simultaneous inference requires system estimation of LPs. Thus we begin

by framing such system estimation within the class of generalized method of moments (GMM)

estimators. This allows us to cover instrumental variable estimation. With this scaffolding in place,

we review two important papers in this arena, Jordà (2009) and Montiel-Olea & Plagborg-Møller

(2019).

The review of the literature up to this stage sets us up to introduce the novel concept of

significance bands. We will show that the LM principle provides a much simpler approach to think
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about the absence of a response and to present the information in a convenient graphical way. In

addition, we also introduce a straightforward wild block-bootstrap procedure that is simple to

implement.

By now, there is a sprawling literature that extends LPs into a variety of new areas. Though we

cannot cover all these new developments, we will briefly touch on methods to smooth LPs in the

context of producing more efficient responses. We will also discuss applications with panel data

and the inferential challenges that these data introduce before concluding.

2. Local projections: an introduction

There are many situations in the study of dynamic systems where the analyst is interested in the

following statistic:

Rsy|x(h, s0, δ) ≡ E(yt+h|st = s0 + δ;xt)− E(yt+h|st = s0,xt) for h = 0, 1, . . . , H

where st is the variable that generates the impulse from st = s0 to st = s0 + δ for some initial value

s0. Denote yt as the outcome variable of interest, whose response to an impulse in st we want to

characterize. Finally, the vector of variables xt contains lags of the outcome, lags of the impulse, and

lags of any other exogenous or predetermined variables, including the constant and deterministic

time trends.

We will refer to st interchangeably as the treatment, intervention, or shock. At this point, we assume

that the shift from s0 to s0 + δ is exogenously determined. In practice, identification assumptions

and methods will be required. However, since the emphasis here is on inference, we will often

prefer to keep things simple. The conditional mean function, E(·|·) can in principle be nonlinear, a

case considered by Angrist & Kuersteiner (2011) and Angrist et al. (2016). We will mostly focus on

linear settings, but it is important to maintain the distinction for now.

We use the notation Rs→y|x(h, s0, δ) instead of Rsy|x(h, s0, δ) when additional identifying as-

sumptions, such as exogeneity of st justify a causal interpretation of the difference in conditional

means. The notation Rs→y|x(h, s0, δ) is meant to convey the direction of the intervention s onto the

outcome y, conditional on x. When it is clear, we will simplify the notation to Rsy(h) to denote the

response of y to an impulse in s, h periods in the future.

For example, when st ∈ {0, 1} is randomly assigned, the conditional expectation E(yt+h|st,xt)

does not depend on xt and only takes two values. Hence, a natural estimate of the response is

simply:

Rs→y|x(h, s0, δ) =
∑T

t=h yt+hst

∑T
t=h st

− ∑T
t=h yt+h(1 − st)

∑T
t=h(1 − st)

; h = 0, 1, . . . , H.
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For h = 0, one can think of this difference in means as a measure of the average treatment effect

in a randomized controlled trial or RCT. The same statistic can be estimated in regression form:

yt+h = µh + βhst + vt+h, (1)

where µh = E(yt+h|st = 0) and βh = E(yt+h|st = 1)− E(yt+h|st = 0) = Rsy(h).
Equation 1 can be easily generalized to allow for st ∈ R and to include a vector of controls xt

which, even if st is randomly assigned, will improve efficiency. Using a linear framework, we arrive

at the typical expression of a local projection:

yt+h = µh + βhst + γhxt + vt+h. (2)

If st is not purely randomly assigned but depends on xt, then including xt may reduce bias while

the effect on the standard errors is ambiguous. The reason is that xt could be correlated with st, but

have no direct effect on yt+h. In that case, including xt in the regression reduces the variance of st

without reducing the variance of the regression residual. However, if one is willing to assume that

the assignment of st is as good as random only given xt, then one can appeal to the conditional

independence assumptions carefully spelled out in, e.g., Angrist & Kuersteiner (2011) and Angrist

et al. (2016). In this scenario, xt needs to be included in the regression.

If st is not randomly assigned even conditional on xt, but there is an instrument or instruments

for it, call them zt, then clearly Equation 2 can be estimated using instrumental variables and we

will be more specific later on about the relevance and exogeneity assumptions needed in this case.

Another obvious extension is to allow for the relationship between yt+h and the right-hand side

variables of this expression to be possibly nonlinear, in which case the values of s0 and xt will be

determinative of the actual response estimated. Hence, consider the following general additive

conditional mean specification:

yt+h = µh(st,xt; s0, δ;θh) + vt+h; h = 0, 1, . . . , H , (3)

where s0 is the initial state for st, δ is the impulse from that initial state, and θ is the parameter

vector. All other components have been previously defined.

Based on Equation 3, then:

Rsy(s0, δ,xt, h) = µh(st = s0 + δ,xt;θh)− µh(st = s0,xt;θh); h = 0, 1, . . . , H,

where the notation makes explicit the dependence of the response on s0, δ, and xt. For example,

consider a simple nonlinear LP (though linear in parameters):

yt+h = αh + βhst + γhxt + ϕhs2
t xt + vt+h (4)
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then clearly µh(st = s0 + δ, xt;θh) = αh + βh(s0 + δ) + γhxt + ϕh(s0 + δ)2xt whereas µh(st =

s0, xt;θh) = αh + βhs0 + γhxt + ϕs2
0xt and hence Rsy(s0, δ, xt, h) = βhδ + ϕh(δ

2 + 2δs0)xt, which

will depend on s0, the initial value of the intervention variable, δ the size of the intervention, and

xt, the value of the current state variable. This example highlights the importance of being careful

in how nonlinear responses are calculated as it has direct bearing on how inference needs to be

constructed.

Assuming instruments are available and they meet relevance and exogeneity conditions that

we will make more precise below, then Equation 3 can be estimated by the Generalized Method of

Moments (GMM) based on the moment conditions:

E [(yt+h − µh(st,xt;θh)) zt] = 0; h = 0, 1, . . . , H. (5)

Furthermore, as we shall explain below, Equation 5 for each h can be stacked and estimated jointly

as a system. Stacking as a system will prove useful when estimates of the covariance matrix of

responses across all horizons is required for simultaneous inference or when it is required for

nonlinear models such as the one in Equation 4.

2.1. Properties of the residual

Inference based on Equation 1 obviously depends on the properties of the residual, vt+h. We present

the main ideas of what differentiates local projections from traditional regression results in as simple

a setup as possible. Hence suppose the data are generated by the following covariance-stationary

AR(1) model. Using the companion form, the AR(1) encompasses more general AR(p) models and

of course, in vector form, general VAR(p) models so the example, while simple, is helpful in thinking

of more complex settings:

yt = m + ρyt−1 + ut; |ρ| < 1; (6)

where ut is a zero-mean white noise process with Eu2
t = σ2

u . All of these assumptions can be relaxed

and made much more general but they suffice to make the point.

The goal is to calculate the response of yt+h to a shock ut. Iterating forward h periods into the

future on the previous expression, we arrive at a common expression for a local projection, along

the lines of that in Equation 2 where the shock of interest is now ut instead of some other exogenous

variable. Hence we have:

yt+h = µh + βhyt + vt+h, (7)

where µh = m(1 + ρ + . . . + ρh−1); βh = ρh, and vt+h = ut+h + ρut+h−1 + . . . + ρh−1ut+1. Given our

assumptions, Equation 7 can be estimated by ordinary least-squares (OLS) and thus, a consistent

estimate of Ruy(h) is β̂h.
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However, notice that the residuals have an MA(h) structure that affects the computation of the

standard error β̂h since:

β̂h = βh +
1

T−h ∑T−h
t=2 ytvt+h

1
T−h ∑T−h

t=2 y2
t

from where

(T − h)1/2(β̂h − βh) =

1
(T−h)1/2 ∑T−h

t=2 ytvt+h

1
T−h ∑T−h

t=2 y2
t

.

Given our assumptions on ut it is easy to see that 1
T−h ∑T−h

t=2 y2
t

p→ 1
(1−ρ2)

σ2
u , whereas the numerator

will converge in distribution to a Normal random variable whose variance, ω2 is:

ω2 = Var

(
1

(T − h)1/2

T−h

∑
t=2

ytvt+h

)
≈

∞

∑
j=−∞

E(ytvt+hyt−jvt+h−j),

where vt+h = ut+h + ρut+h−1 + . . . + ρh−1ut+1 and yt = ut + ρut−1 + . . .. Putting the pieces back

together we arrive at:

(T − h)1/2 σ2
u

ω(1 − ρ2)
(β̂h − βh)

d→ N(0, 1). (8)

These derivations show that approximating ω in finite samples will require a heteroscedasticity

and autocorrelation consistent estimator. Jordà (2005) originally proposed using the Newey-West

estimator as a simple solution. Since then, several developments that we discuss next have provided

more elegant solutions.

3. LP Inference: The issues

In thinking about inference, it will be important to clearly outline the objective of the inferential

procedure to design the best approach. In this regard at least three obvious objectives come to mind:

1. Pointwise inference: How should one assess the precision of individual estimated response

coefficients and the value that they attain?

2. Simultaneous inference: How should one assess subsets of response coefficients or the

trajectory of the response as a whole?

3. Significance: What is the best way to test the null that the intervention has no effect on the

outcome?

Layered on top of these three possible objectives, the analyst should consider the properties of

alternative procedures available. Plagborg-Møller & Wolf (2021) and Xu (2023) show that VARs
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and LPs are asymptotically equivalent when the data are generated by a VAR(∞) as long as the lag

length is allowed to grow to infinity with the sample size. In finite samples and under the same

VAR(∞) assumption, Jordà et al. (2024) show that, whereas the truncation lag used to estimate the

VAR, say p, ensures consistency of the first p lags of the VAR, it does not ensure consistency of

the impulse response beyond the pth horizon whereas this is not the case for LPs: LPs remains

consistent. Moreover, recent work by Plagborg-Møller et al. (2024) shows that LPs are even robust to

misspecification of the truncation lag.

Further, the bias-efficiency trade-off between VARs and LPs, determine the probability coverage

properties of each approach. Going back to Plagborg-Møller et al. (2024), these authors show that LP

inference is robust to relatively large amounts of misspecification even when compared to VARs

that are only mildly misspecified.

How did they arrive at this conclusion? Plagborg-Møller et al. (2024) use a setting where they

assume that the data are generated by a VAR where the residuals follow a moving-average structure

that vanishes as the sample grows. In large samples, the VAR is clearly correctly specified. However,

VARs undercover even when misspecification is so small, that it would be difficult or impossible

to detect in small samples. On the other hand, they show that LPs have the correct coverage even

when misspecification is so large that it can be easily detected in a finite sample.

Finally, a common concern is not just to derive procedures that are valid in large samples, but to

construct methods that account for small sample properties of the data that may be far from the

large sample ideal. These will usually include simulation-based inference, such as the bootstrap,

as we shall discuss. Bayesian inference is also possible. Although LPs are not a generative model

with which to construct the likelihood, Tanaka (2020) and Ferreira et al. (2023), for example, provide

Bayesian estimation methods of LPs. LPs can also be used to shrink large dimensional Bayesian

VARs toward the responses generated with LPs as Miranda-Agrippino & Ricco (2017) show.

4. Pointwise Inference

Section 2 and Equation 8 more specifically, provide intuition for why, generally speaking, the

residuals of the LP will have a moving average structure and how this might affect inference as

a result. Jordà (2005) proposed using a heteroscedasticity and autocorrelation consistent (HAC)

estimator such as Newey & West (1987). Much of the literature appears to follow a similar strategy,

even when it comes to panel data, where the Driscoll-Kraay (Driscoll & Kraay, 1998) covariance

estimator is used instead.1 However, whether the Driscoll-Kraay estimator is the right approach

depends on the dimensions of the panel. Implicitly, the assumption is that T >> N, where T is the

time dimension of the panel and N is the cross-section dimension. We reserve a more thorough

discussion of panel data inference to a later section. Instead, we begin by discussing the recent LP

inferential procedures introduced for time series data in the literature.

1The Driscoll-Kraay estimator can be seen as the extension to panel data of the Newey-West estimator.
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4.1. LP-FGLS

Lusompa (2023) proposes a parametric feasible GLS procedure that directly accounts for the specific

MA structure of the residuals. This LP-FGLS procedure can be best explained with the simple AR(1)

example in Equation 6. The idea is to use the residuals from the first local projection, ût as follows.

LP-GLS algorithm

• For h = 1 estimate:

yt = m1 + β1yt−1 + ut → β̂1, ût

• For h = 2, construct ỹt+1 = yt+1 − β̂1ût and hence estimate:

ỹt+1 = m2 + β2yt + vt+1 → β̂2

• For h = 3, construct ỹt+2 = yt+2 − β̂1ût+1 − β̂2ût and hence estimate:

ỹt+2 = m3 + β3yt + vt+2 → β̂3

• For h > 3 sequentially generate ỹt+h = yt+h − β̂1ût+h−1 − β̂2ût+h−2 − . . . − β̂hût and regress:

ỹt+h = mh + βh+1yt + vt+h

The residuals v̂t+h will be approximately white noise and hence heteroscedasticity robust inference

is sufficient.

In a related paper, Breitung & Brüggemann (2023) propose a similar approach that consists of

using the transformation ỹt+h = yt+h − ût+h−1 and use {ût, . . . , ût+h−2} as additional regressors.

Breitung & Brüggemann (2023) show that this correction is as efficient as responses estimated with

the correct vector autoregression in finite samples. Lusompa (2023) also provides bootstrap versions

of the LP-FGLS procedure, which have good efficiency gains relative to standard procedures.

As an illustration, Figure 1 compares estimates of an impulse response using the usual Newey-

West correction with estimates based on this LP-GLS procedure. The responses are estimated using

simulated data from a simple bivariate model given by:(
yt

xt

)
=

(
0.7 0.4

0.4 0.7

)(
yt−1

xt−1

)
+

(
uy

t

ux
t

)
; uy

t = ey
t + ex

t , ux
t = ex

t ; ey
t , ex

t
iid∼ N(0, 1) , (9)

with a sample of 150 observations (after disregarding 1,000 initial observations). Figure 1 shows the

response of x to a shock to ux and illustrates that both methods generate almost identical response
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Figure 1: Comparing Newey-West versus FGLS error bands
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Notes: Data generated from a bivariate VAR(1). The simulated sample size is 150 observations after disre-
garding 1,000 initialization observations. LP-OLS response (dashed line) with Newey-West (dot dashed lines)
versus LP-FGLS (solid line) with FGLS (shaded region) error bands at 95% confidence level. See text.

estimates and very similar error bands with a slight efficiency edge for LP-FGLS. This is expected

since the DGP fits quite well with the theoretical background.

4.2. Lag-augmentation of LPs

Montiel Olea & Plagborg-Møller (2021) introduce the idea of using lag-augmentation to conduct

robust inference with LPs. They show that this procedure is uniformly valid over both stationary

and non-stationary data and over a wide range of response horizons. Going back to the stylized

model AR(1) in equation Equation 6 with m = 0, assume ut is strictly stationary and further assume

E(ut|{us}s ̸=t) = 0 almost surely. We make these assumptions to follow the setup in Montiel Olea

& Plagborg-Møller (2021). Using similar notation to that in their paper, let β(ρ, h) denote the LP

parameter used to estimate the impulse response ρh, that is

yt+h = β(ρ, h) yt + ξt(ρ, h); ξt(ρ, h) ≡
h

∑
l=1

ρh−l ut+l . (10)

Next, Montiel Olea & Plagborg-Møller (2021) suggest adding yt−1 as an additional regressor

to Equation 10. The purpose of this lag augmentation is to make the effective regressor of interest

stationary even if the data yt has a unit root. Montiel Olea & Plagborg-Møller (2021) show that,

rearranging, the lag-augmented local projection can be written as

yt+h = β(ρ, h) ut + β(ρ, h + 1)yt−1 + ξt(ρ, h) . (11)
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Although ut is stationary and therefore would sidestep distortions to the normal distribution caused

by near-to-unity asymptotics, it is not directly observed. However, due to the linear relationship

between yt and ut, the feasible local projection onto (yt, yt−1) provides an estimate of β(ρ, h) precisely

equal to the one that would be obtained from the projection onto (ut, yt−1).

Thus, the actual regression to be estimated is:

yt+h = β(h)yt + β(h + 1)yt−1 + ξt(h) → β̂(h), ξ̂t(h) . (12)

Lag-augmentation has two benefits. As Montiel Olea & Plagborg-Møller (2021) show, the

distribution of β̂(h) of this feasible lag-augmented local projection is uniformly normal in ρ ∈ [−1, 1]

using similar arguments to those used of lag-augmentation in AR inference (see, e.g., Sims et al.,
1990; Toda & Yamamoto, 1995; Dolado & Lütkepohl, 1996; Inoue & Kilian, 2002, 2020). The second

benefit is that it simplifies the computation of standard errors (though now the convergence rate

will be T1/2 instead of T).

In particular, it is sufficient to use a heteroskedasticity-robust routine to estimate standard errors

for β̂(h), like the usual White correction (in STATA, reg with the option robust or even better, hc3).

How can we magically dispense with the moving average structure of the residuals evident in

Equation 10? From Equation 11, note that ut was assumed to be uncorrelated with past and future

values of itself, and therefore the regression score ξt(ρ, h)ut is serially uncorrelated. To see this, note

that the standard error formula in the ideal regression of Equation 11 would be

ŝh =
(∑T−h

t=1 ξ̂t(ρ, h)2û2
t )

1/2

∑T−h
t=1 û2

t
.

But by similar linearity arguments used to justify the feasible augmented local projection, it can be

calculated directly from Equation 12 using White corrected standard errors as indicated.

Several remarks deserve mention. First, Montiel Olea & Plagborg-Møller (2021) show that

lag-augmented LP inference is relatively robust to persistent data and provides appropriate coverage

even at relatively long horizons (as long as hT/T → 0). Second, lag-augmentation is shown to

work more generally when the DGP is assumed to be a VAR(p) or a vector error correction model

(VECM), though we are not aware that similar results have been derived for panel data in settings

where the time dimension is larger than the cross section dimension, i.e., T ≫ N. Of course, when

N ≫ T, asymptotic results are driven by the cross-sectional dimension of the panel and then the

asymptotic distribution is normal even when the data are persistent. Third, lag-augmentation can

also be applied to identified LPs (Plagborg-Møller & Wolf, 2021; Montiel Olea & Plagborg-Møller,

2021).

As an illustration of how Newey-West and lag-augmented error bands compare, we revert back

to data simulated from the process shown in Equation 9 but this time use LP-OLS estimates with

error bands calculated using Newey-West vs lag-augmentation. This is shown in Figure 2. The

figure shows that both methods generate similar error bands. In fact, several experiments (not
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Figure 2: Comparing Newey-West versus lag-augmented error bands
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Notes: Data generated from a bivariate VAR(1). The simulated sample size is 150 observations after disregard-
ing 1,000 initialization observations. Response shown with Newey-West (shaded region) versus lag-augmented
(dot-dashed line) error bands at 95% confidence level. See text.

reported here) suggest that, for stationary data, the coverage is very similar between methods.

Lag-augmented bands tend to be somewhat more conservative the more persistent the data.

Finally, Montiel Olea & Plagborg-Møller (2021) provide bootstrap procedures that we briefly

sketch here though the reader should go to the original source for details. Suppose that one wants

to provide inference for an impulse response estimated with lag-augmented LPs for which one

can also obtain the standard error as described earlier (i.e., using White corrected standard errors).

Montiel Olea & Plagborg-Møller (2021) then suggest estimating the corresponding VAR(p).2 This

VAR will serve two purposes. One is to construct the equivalent response to that estimated with

LPs, whose difference is then used to construct the t-ratio using the LP standard error. The second

is to generate bootstrap replicates of the data using a parametric wild bootstrap (see, e.g., Gonçalves

& Kilian, 2004) based on the VAR(p). Using these bootstrap replicates, then one estimates the

lag-augmented LP responses and their standard errors. These are the ingredients necessary to then

construct a percentile-t confidence interval as usual.

5. Joint inference

Error bands, as they are overwhelmingly presented in the literature, are the result of inverting the

t-statistics of individual hypotheses, as we have seen. When the interest turns to assessing the

overall trajectory of the impulse response, the question becomes one of simultaneous inference.

Testing joint hypotheses requires the covariance matrix of the response coefficients. Thus, we begin

this section by providing a system Generalized Method of Moments (GMM) setup that will allow us

2One can also bias-adjust the VAR coefficients using the correction by Pope (1990).
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to obtain this covariance matrix. Moreover, it will also allow us to consider instrumental variable

estimation methods.

Although joint hypotheses tests are straightforward to construct (under rather general assump-

tions), presenting the evidence graphically, as we did with error bands, is not. After introducing

the GMM estimator for LPs, we discuss two approaches to achieve this, one based on Scheffé’s

S-method, and another based on a sup-t test. Both approaches generate more conservative error

bounds designed to accommodate hypotheses tests on subsets of response coefficients. In prac-

tice, these methods have found less echo in the literature precisely because the bounds are wider.

However, some of the insights from these procedures are valuable.

5.1. LP-GMM

GMM provides a convenient framework to estimate LPs jointly, as we advanced when discussing

Equation 5. Let yt(H) = (yt, . . . , yt+H)
′ be an (H + 1)× 1 vector that collects the outcome variable

observed at increasingly distant horizons into the future. Let St = IH+1 ⊗ st where IH+1 is the identity

matrix of order H + 1 and st is the intervention variable. We collect the error terms in vt(H) =

(vt, . . . , vt+h)
′. The response coefficients are β = (β0, . . . , βH)

′. Exogenous and predetermined

variables collected in xt could be easily included by defining Xt = IH+1 ⊗ xt. However, for

simplicity, we will mostly set them aside for the presentation. In linear settings, we could simply

invoke the Frisch-Waugh-Lovell theorem and orthogonalize the outcome and the intervention with

respect to the controls before proceeding. Finally, suppose an 1× l vector zt of instrumental variables

is available with l ≥ 1. Hence we construct Zt = IH+1 ⊗ zt. If no instruments are available, but st is

exogenously determined (perhaps conditional on controls), then one can simply set Zt = St.

Using these definitions, the population moment conditions of the system of local projections can

be expressed as:

E[Z′
t(yt(H)− Stβ)] = 0.

Thus, the corresponding finite sample GMM problem can be written as:

min
β

[
1
N

T∗

∑
t=t0

Z′
t(yt(H)− Stβ)

]′
Λ̂−1

[
1
N

T∗

∑
t=t0

Z′
t(yt(H)− Stβ)

]
,

with N = T∗ − t0, where t0 denotes the first observation available after accounting for possible lags

in the control set and T∗ = T − H − 1. One could choose to set Λ̂ = Il×(H+1). The estimator, referred

to as the equally weighted estimator, yields consistent estimates of β, but the covariance matrix is

not valid for inference, as is well-known.

11



The optimal weighting matrix, correcting for heteroscedasticity and autocorrelation with, for

example, a Barlett correction, is:

Λ̂ = Γ̂0 +
J

∑
j=1

K(j)(Γ̂j + Γ̂′
j); K(j) =

[
1 − j

J + 1

]
; Γ̂j =

1
N

N

∑
t0

Z′
tv̂t(H)v̂′

t−j(H)Zt−j.

where ṽt(H) refers to the residuals based on the equally weighted estimator, which we know to be

consistent.

Stock & Watson (2018) and Plagborg-Møller & Wolf (2022) provide appropriate relevance and

exogeneity conditions (under relatively general assumptions for the underlying DGP) for the analysis

of LPs. In our model, these can be stated as:

• Relevance: E(z′
tst|xt) ̸= 0

• Exogenenity: E(Z′
tvt(H)|Xt) = 0

where we explicitly include the controls in the conditioning set to make clearer their influence

(despite having proceeded by projecting their influence away in a first stage or simply when they

are subsumed in the vector of instruments, zt). Our exogeneity condition is satisfied under the

contemporaneous and lead-lag exogeneity conditions of Stock & Watson (2018).

Based on the relevance and exogeneity assumptions just stated and standard results from the

algebra of GMM, estimates of the impulse response can be obtained from:

R̂sy = β̂ =

(
1
N

T∗

∑
t0

S′
tZtΛ̂−1Z′

tSt

)−1(
1
N

T∗

∑
t0

S′
tZtΛ̂−1Z′

tyt(H)

)
,

which will be consistent and asymptotically normally distributed with approximate covariance

matrix given by:

Ω̂β =

[(
1
N

T∗

∑
t0

S′
tZt

)
Λ̂−1

(
1
N

T∗

∑
t0

Z′
tSt

)]−1

. (13)

Joint estimation of the impulse response using this GMM set-up is useful as it provides an

estimate of the covariance matrix, Ω̂β, a key ingredient to construct any joint hypothesis test of

interest. It will also be an important ingredient in the construction of error bands that accommodate

simultaneous inference, as the next section briefly explains.

5.2. Simultaneous inference

Analysts interested in testing features of the impulse response involving more than one parameter

can set up the appropriate hypothesis test as usual using the F-test, for example, and report

the results of the test in a table. However, how should one represent simultaneous inference

12



graphically if one were interested in representing bounds with appropriate probability coverage that

accommodate a variety of hypothesis tests an analyst may conduct? Impulse response coefficients

are correlated. Thus, the usual practice of inverting the t-ratio to display error bands will not provide

the correct probability coverage. The correct approach requires that we construct error bands that

account for the simultaneous nature of the family of hypotheses of interest.

This problem was highlighted by Jordà (2009). His solution relied on Scheffé’s multiple com-

parison approximation or S-method (Scheffé, 1953). Asymptotically, the sum of the squares of the

t-ratios of the LP is approximately χ2
H distributed. Thus, the critical value with which to construct

simultaneous error bands is (c2
α/H)1/2 where c2

α refers to the critical value of a χ2
H. The advantage

of this method is that it does not require simulation methods to obtain the critical value.

More recently, Montiel-Olea & Plagborg-Møller (2019) proposed a more efficient approximation

based on the sup-t procedure. Although this method requires simulation methods, it is shown to

produce the narrowest bands for a given probability coverage. In particular, let β = (β1, . . . , βH),

and assume β
d→ N(0, Ωβ). The goal is to find cα such that the error bands defined by:

B̂(cα) = [β̂0 − cαΩ̂0,0, β̂0 + cαΩ̂0,0]× . . . × [β̂H − cαΩ̂H,H, β̂H + cαΩ̂H,H ]

such that:

P(β ∈ B̂(c)) ≥ 1 − α

Montiel-Olea & Plagborg-Møller (2019) show that:

P(β ∈ B̂(c)) → P
(

max
h=0,1,...,H

∣∣∣Ω−1/2
h,h Vh

∣∣∣ ≤ cα

)
; V = (V0, V1, . . . , VH)

′ ∼ N(0, Ωβ).

Although the distribution of maxh=0,1,...,H

∣∣∣Ω−1
h,hVh

∣∣∣ is unknown, it is relatively easy to obtain any

desired quantile of this distribution. Thus, error bands for simultaneous inference can be constructed

according to the following algorithm:

Plug-in sup-t algorithm

• Step 1: Draw M i.i.d. normal vectors V̂(m) ∼ NH(0H, Ω̂β), m = 1, . . . , M.

• Step 2: Define q̂1−α, the empirical 1 − α quantile of maxh=0,1,...,H

∣∣∣Ω−1/2
h,h Vh

∣∣∣ across m =

1, . . . , M.

• Step 3: Construct the error bands for each h as: [β̂h − q̂1−αΩ̂h,h, β̂h + q̂1−αΩ̂h,h]; h = 0, 1, . . . , H

Montiel-Olea & Plagborg-Møller (2019) further provide bootstrap and Bayesian versions of this

procedure. The interested reader should consult their paper for more details.
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Figure 3: Comparing Newey-West versus sup-t error bands
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Notes: Data generated from a bivariate VAR(1). The simulated sample size is 150 observations after disre-
garding 1,000 initialization observations. Response shown with Newey-West (shaded region) versus sup-t
(dashed-dotted lines) error bands at 95% confidence level. See text.

To get a sense of how much wider the sup-t bands are, we revisit the example of Figure 1 and

Figure 2. We simulate data from the same model and then construct 95% sup-t bands using joint

estimation of all responses simultaneously to obtain the resulting covariance matrix. In Figure 3, the

sup-t bands are shown as dashed blue lines. Relative to the usual Newey-West bands, shown as a

shaded region in red, it is easy to see that they are wider but not by a very large amount.

6. Significance

In a randomized controlled trial (RCT), a common hypothesis of interest is to test the null that

the treatment is ineffective. Similarly, an impulse response can be thought of as the response to

a treatment observed over time and therefore, a common hypothesis of interest will be to assess

whether the response is different from zero, just as in the RCT example. It turns out that under the

null, the distribution of the appropriate hypothesis test can simplify the construction of significance
bands considerably.

To understand the basic issues, we use a simple example where the controls are set aside to

keep the notation simple. For example, we may presume that the outcome yt+h, the intervention, st,

and the instrument zt have been previously orthogonalized with respect to the controls xt based

on the Frisch-Waugh-Lovell theorem. Thus, consider the following local projections estimated by

instrumental variables regression:

yt+h = stβh + vt+h for h = 0, 1, . . . , H − 1; t = 1, . . . , T
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We assume that zt, meets the conditions for relevance and exogeneity, as well as an exclusion

restriction. Then we postulate that:

• Relevance: E(st zt) ̸= 0.

• Exogeneity: E(vt+h zt) = 0 ∀h = 0, 1, . . . , H − 1.

Depending on the setting, zt may include st itself, such as when st is an observable shock,

and then the discussion returns to a more traditional OLS setting. Or if st is, conditional on xt,

sequentially exogenous. This would be the case in a recursive identification scheme. We further

assume that yt, st, and zt are covariance stationary. This assumption is not necessary to ensure

consistency of the local projection, but will make deriving our inferential procedures and the

presentation in this section straightforward.

Based on this simple set up, the instrumental variable estimator for βh can be written as:

√
T − h(β̂h − βh) =

(T − h)−1/2 ∑n
1 zt yt+h

(T − h)−1 ∑n
1 zt st

for h = 0, 1, . . . , H − 1, (14)

where we note that we will evaluate the statistic under the null H0 : βh = 0. Under standard

regularity conditions, and the instrumental variable assumptions for local projections, it is easy to

see that:

1
T − h

n

∑
1

zt st
p→ E(zt st) ≡ γzs

Next, consider the numerator in Equation 14 evaluated at the null H0 : βh = 0:

1
(T − h)1/2

n

∑
1

zt yt+h
d→ N(0, s2

η,h)

where s2
η,h is given by

s2
η,h = lim

T→∞
Var

(
1

(T − h)1/2

n

∑
1

zt yt+h

)
=

∞

∑
j=−∞

E(zt vt+h zt−j vt+h−j)

and where the RHS is the typical HAC type variance formula. The equality follows from the null

hypothesis that βh = 0 for h = 0, 1, . . . , H − 1. It then follows that the limiting distribution of β̂h is

given by

√
T − h(β̂h − 0) d→ N(0, σ2

h ); σ2
h =

s2
η,h

γ2
zs

; ∀h (15)
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From Equation 15 it is easy to derive a 1 − α percent band around the zero null so that:

P
[

ζα/2
σh√

T − h
< β̂h < ζ(1−α/2)

σh√
T − h

]
= 1 − α

where ζα/2 is the critical value of a standard normal variable at α/2 and for a standard normal,

ζ1−α/2 = −ζα/2, as is well known.

To construct feasible confidence intervals we need to replace σh with an estimate. The LM

principle requires that σh be estimated using the conventional formula for HAC robust standard

errors for the just identified two-stage least squares estimator, but evaluated at βh = 0. This is

accomplished by estimating s2
η,h with the long-run variance of ηt,h = ztyt+h. The estimator for σ2

h

then is based on

σ2
h =

s2
η,h

γ2
sz

. (16)

When plotting a significance band of an impulse response up to H periods, we are essentially

conducting a joint hypothesis test. Intuitively, the more horizons considered, the more likely it is to

spuriously reject the null when the null is true in a finite sample. A simple way to address this issue

is with a Bonferroni adjustment as proposed in Dunn (1961) so that the significance bands for each

β̂h become: [
ζα/2(H+1)

σh√
T − h

, ζ1−α/2(H+1)
σh√

T − h

]
.

The joint probability that the estimated impulse response lies within the confidence band is given

by:

P

(
H⋂

h=0

{
ζα/2(H+1)

σh√
T − h

< β̂h < ζ(1−α/2(H+1))
σh√

T − h

})
≥ 1 − α

where the inequality holds in large samples and when the null hypothesis of a zero response is true.

Similarly, the test of the joint hypothesis that all response coefficients are zero rejects when:

β̂h ̸∈
[

ζα/2(H+1)
σh√

T − h
, ζ1−α/2(H+1)

σh√
T − h

]
for at least one h. By the same argument, it follows that the size of such a test is not more than α in

large samples.

Under stronger assumptions such as independence between zt and vs for all t and s, or ho-

moskedasticity of vt+h such that E(vt+h−jvt+h|zt, zt−j ) = E(vt+h−jvt+h) a further simplification of
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the expression for s2
η,h is possible. We obtain

s2
η =

∞

∑
j=−∞

E(zt vt+h zt−j vt+h−j) =
∞

∑
j=−∞

E(zt zt−j)E(vt+h vt+h−j) (17)

=
∞

∑
j=−∞

γz,j γy,j

where the equality follows from the independence between zt and vt+h. We define γz,j and γy,j as

the jth autocovariances of z and y respectively. Importantly, note that ω is no longer a function of the

horizon h under these additional restrictions. The implication is that under the additional restrictions

of homoskedasticity or independence, the significance bands will be constant as a function of the

horizon h.

Under these stronger conditions we can write Equation 15 under the null hypothesis as:

√
T − h(β̂h − 0) d→ N(0, σ2); σ2 =

∑∞
j=−∞ γz,jγy,j

γ2
zs

=
s2

η

γ2
zs

; ∀h (18)

A simple example provides further intuition and a connection to well-known results. In the special

case where z = s, and y and s are serially uncorrelated, Equation 17 simplifies even further to:

σ2 =
γy,0

γs,0

Thus, when y = s = z and y is a white noise and hence γy,0 = γs,0 so that σ2 = 1, the local

projection estimator is simply an estimator of the autocorrelation function. Hence, applying the

same derivations as in Equation 18, it is easy to see that one recovers the well known3 bands for the

autocorrelogram of y. Specifically, focus on h = 1 in the special case that y is a white noise but one

estimates an AR(1) model:

√
n(ρ̂ − 0) d→ N(0, 1). (19)

This is the well known case where the 95% asymptotic significance bands in a correlogram are

calculated as ±1.96× 1/
√

n and provides a nice window into our proposed procedures. Importantly,

notice that the bands do not depend on the horizon (in fact, they also do not depend on the variance

in this special case). Whenever an autocorrelation coefficient exceeds the band, the interpretation

is that said coefficient can be deemed to be different from zero. This, of course, means that the

hypothesis that the impulse/treatment has no effect on the outcome can be rejected.

3Not Barlett corrected.
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6.1. Practical implementation

Constructing significance bands in practice based on the results from the previous section is

straightforward and can be implemented using standard statistical software. We provide a STATA

example to illustrate this point and that corresponds to the figures displayed in the paper. The basic

steps can be summarized as follows:

Significance bands using asymptotic approximations

1. Calculate the sample average of the product st zt. Call this γ̂sz.

2. Construct the auxiliary variable ηt,h = yt+h zt and regress ηt,h on a constant. The Newey-West

estimate of the standard error of the intercept coefficient is an estimate of sη̂,h.

3. An estimate of σ/
√

T − h , call it ŝβh , is therefore:

ŝβh =
ŝη̂,h

γ̂sz

4. Construct the significance bands as:[
ζα/2(H+1) ŝβh , ζ1−α/2(H+1) ŝβh

]

A bootstrap procedure is equally easy to construct. Note that we do not take a position on the

data generating process (DGP). Therefore, we apply the bootstrap directly to step 2 of the previous

construction of the significance band. Because of the time series dependence and the possible

existence of heteroscedasticity, we will use a wild-block bootstrap (see, e.g. Gonçalves & Kilian,

2007). The STATA implementation only requires a few lines of code. Thus, the entire procedure can

be described as follows:

Significance bands using the Wild-Block Bootstrap

1. Calculate the sample average of st zt. Call this γ̂sz.

2. Construct the auxiliary variable ηt,h = yt+h zt and regress ηt+h on a constant. The Wild Block

bootstrap estimate of the standard error of the intercept coefficient is an estimate of sη̂,h.

3. An estimate of σ/
√

T − h , call it ŝb
βh

, is therefore:

ŝb
βh

=
ŝb

η̂,h

γ̂sz

4. Construct the significance bands as:[
ζα/2(H+1) ŝ

b
βh

, ζ1−α/2(H+1) ŝ
b
βh

]
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6.2. Application: the response of shelter inflation to monetary policy

We showcase these procedures with a simple application to shelter inflation. As the COVID-19

pandemic was winding down, inflation measured by the personal consumption expenditures (PCE)

index, excluding food and energy (core PCE inflation), peaked at around 5.5% on March 2022. In

response, the Federal Reserve raised the federal funds rate and subsequently inflation declined to

2.6% by June 2024 (the last data point as of the writing of this paper). However, inflation has been

slow to travel back to the 2% target, in large part, because shelter inflation (which mainly measures

rents that tenants face and owners de facto pay themselves) has been slow to decline.

Hence, we evaluate how responsive shelter inflation is to interest rates. We use the series of

monetary shocks recently provided by Bauer & Swanson (2023). These shocks are obtained from

high frequency financial data after removing information effects. The sample available is January

1988 to December 2019 so as to avoid polluting our estimates with the COVID-19 pandemic. We use

as controls 12 lags of shelter Personal Consumption Expenditures (PCE) inflation, the unemployment

rate (to control for aggregate conditions in the economy), and lags of the federal funds rate. The

left-hand side variable is the long difference of 100 times the log of shelter PCE price index (PCEPI),

that is 100(yt+h − yt−1), where yt is the log of shelter PCEPI. This means that the response reflects

the cumulative percentage change in the level of shelter prices up to h periods since the shock.

Figure 4 displays estimates of this cumulative response along with Newey-West confidence

bands (for 1 and 2 standard deviations in width) along with significance bands estimated with both

analytic and bootstrap methods. Based on the conventional error bands displayed in the figure, one

might be tempted to conclude that shelter inflation does not respond to monetary shocks. The error

bands contain zero throughout the 48 periods displayed.

However, note that the response of shelter PCEPI is almost uniformly negative each month over

the 4 years displayed. Indeed, an F-test of the null that the response coefficients are jointly zero is

estrenuosly rejected (the p-value is 6.18e-78). And in fact, the significance bands displayed show

that, except for about two and one half years after the shock, the response is clearly different from

zero. Analytic bands are narrower than bootstrap bands for about 30 periods, after which they are

slightly wider.

6.3. Monte Carlo evidence

This section presents a couple of simple experiments in graphical form to assess the calculation

of significance bands using both the asymptotic approximation and the wild-block bootstrap

procedures discussed in the previous section. The data are generated as follows:
yt = βst + 0.75yt−1 + uyt

st = 0.5st−1 − 0.25yt−1 + zt + ust

zt = uzt

uyt, ust, uzt ∼ N(0, 1); β ∈ {0, 0.25, 0.50, 0.75}
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Figure 4: Response of PCE shelter inflation in percent to a Bauer-Swanson monetary shock
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Notes: cumulative response of shelter PCEPI to a Bauer-Swanson monetary shock (Bauer & Swanson, 2023). The specification includes

12 lags of shelter PCE inflation, the unemployment rate, and the federal funds rate. The sample is January 1998 to December 2019.

Traditional, point-wise one and two standard error bands displayed as shaded regions using Newey-West standard errors along with

analytic (in maroon, short-dash) and bootstrap (in pink long-dash), Bonferroni adjusted significance bands. See text.

This simple system encapsulates several features. First, the treatment variable, st, affects the

outcome, yt, contemporaneously. The outcome is itself serially correlated with a coefficient 0.75. The

idea is to have internal propagation dynamics. Next, the intervention responds to feedback from the

value of the outcome in the previous period, but also has some internal propagation dynamics. In

addition, movements in the intervention are caused by the exogenous variable zt, which will act as

our instrumental variable. Finally, the coefficient β, which captures the effect of the treatment on the

outcome, has values between 0 and 0.75. When β = 0 we have the null model with which to assess

the size of the test. Increasing the value of β allows us to assess the power of the significance bands.

We generate samples of 100, and 500 observations with 500 burn-in observations that are

discarded to avoid initialization problems. For each sample size and for the different values of β we

generate 1,000 Monte Carlo replications. The implementation of the wild block-bootstrap is based

on 1,000 bootstrap replications as well. For the Newey-West step as well as for the block size in the

bootstrap, we use 8 lags. Figure 5 displays the results for sample sizes of 100 and 500 observations.
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The figure summarizes quite a bit of information. The shaded bands around the mean estimate

of the impulse response showcase the 25th and the 975th largest values for each coefficient estimate

in the Monte Carlo simulation. The dashed lines correspond to the significance bands. Both

Newey-West and the bootstrap procedures (using 8 lags) generate nearly indistinguishable values

so the differences cannot be seen with the naked eye. For each Monte Carlo exercise, we construct

rejection rates for each type of band constructed. The rate is calculated as the share of replications

where one or more impulse response coefficients exceed the significance bands.

Several results deserve comment. First, consider the size of the test. We have chosen a rather

conservative strategy with a window of size 8 both for Newey-West and for the block-size in the

implementation of the bootstrap. As a result, with a small sample of 100 observations, the size is

about 10% instead of the nominal 5%, though with 500 observations the size is close to 4%.

However, even with this conservative choice, the power of the test is respectable with a sample

size of 100, improving from about 25% when β = 0.25 to about 95% when β = 0.75. These numbers

jump with 500 observations with about 95% for β = 0.25 and 100% even for β = 0.5.

7. Other LP settings

Work on extensions to LPs is ongoing. Two settings in particular, have direct implications for how we

think about LP inference. LPs can be seen as a semiparametric estimate of the true impulse response

and the reason why they have lower bias. Thus, some authors have proposed methods to either

smooth the LPs via some low dimensional series approximation (e.g. Barnichon & Brownlees, 2019;

Barnichon & Matthes, 2018), or by pairing LPs with Bayesian methods to shrink high-dimensional

VARs toward the LP response (e.g. Tanaka, 2020; Ferreira et al., 2023).

The other setting that is popular in empirical research is panel data. Because LPs are a single-

equation method, they lend themselves well to panel data settings. However, although there is an

extensive literature using LPs with panels and there is an extensive literature on inference in panel

data settings, little is known about LP inference in panel data settings. In the next sections, we give

a brief overview on these less traditional settings.

7.1. Smoothing local projections

Smoothing can be used to reduce the uncertainty about the impulse response. Consider the GMM

moment condition that we introduced in subsection 5.1, repeated here for convenience:

E[Z′
t(yt(H)− Stβ)] = 0
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Figure 5: Significance Bands: Monte Carlo exercise
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(b) Sample size: 500
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Notes: Monte Carlo exercise. Sample size = 100 and 500 observations (500 burn-in replications). Significance bands constructed using

asymptotic approximations (Classic) and the Wild Block bootstrap (Boot). The rejection rate refers to the share of replications where one

or more coefficients exceed the significance bands constructed with each procedure. Treat coefficient refers to the coefficient β described

in the text. Significance bands constructed at 95% confidence level. Thus, when Treat coefficient = 0, the rejection rate should be 0.05,

otherwise, it should be 1. See text.
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where β is a (H + 1)× 1 dimensional vector with covariance matrix Ωβ, which can be estimated

as shown in Equation 13. Smoothing can be thought of as replacing β with a lower-dimensional

function, say ϕ(h,θ) with dim(θ) << dim(β). In Barnichon & Brownlees (2019), the authors propose

using the B-spline method of Eilers & Marx (1996), whereas Barnichon & Matthes (2018) propose

using Gaussian basis functions.

In general, assuming that one can obtain LP estimates that are asymptotically normal (such as

when estimating LPs using the GMM setup in subsection 5.1) so that β̂ d→ N(β, Ωβ) and Ω̂β
p→ Ωβ,

then one can setup the minimum distance problem:

min
θ

Q(θ) = min
θ

(β̂− ϕ(h;θ))′Ω̂−1
β (β̂− ϕ(h;θ)) (20)

to estimate ϕ̂(h, θ̂) efficiently. Moreover, under standard regularity conditions, the quality of the

approximation can be judged with an overidentification restrictions test since Q̂(θ̂) → χ2
q with

q = dim(β)− dim(θ). The variance of θ is Ω̂θ = (Φ′
0Ω̂−1

β Φ0)−1 where Φ0 = ∂ϕ(h,θ)/∂θ evaluated

at the true value θ0. An example of how smoothing can make response estimates more efficient is Li

et al. (2024).

7.2. Panel data

Panel data offers more opportunities to explore data using LPs and more opportunities to conduct

inference. As we anticipated in section 4, when the T → ∞ with N fixed or when N grows at

a slower rate than T, the asymptotic distribution of the LP estimates will be dominated by the

time-dimension of the panel and in that case, the counterpart to Newey-West HAC standard errors

is to use the Driscoll & Kraay (1998) covariance estimator.4

Cluster robust inference can be used in situations where N → ∞ with T fixed. In such a

setting, autocovariances are relatively efficiently estimated and there is no need to specify the

residual autocorrelation structure. When T is relatively small, a recommended correction for

heteroscedasticity is the wild bootstrap (see, e.g. Cameron et al., 2008; Canay et al., 2021; Roodman

et al., 2019)5. If N is relatively large, the asymptotic distribution will be dominated by the cross-

sectional dimension of the panel. In that case, stationarity or lack thereof plays no role in computing

standard errors.

Relatedly, in a recent paper, Mei et al. (2023) show that incidental parameter biases (Nickell, 1981)

crop up when the dimensions of the panel N, T → ∞ as N/T → c, c ∈ (0, ∞). To avoid this bias,

these authors suggest using the split panel jacknife estimator of Dhaene & Jochmans (2016) and

Chudik et al. (2018). Denote β̂h the full sample estimate with fixed-effects and β̂a
h and βb

h estimates

based on splitting the sample along the time series dimension into two halves, T = Ta + Tb. Then,

the bias corrected estimate of the impulse response is β̃h = 2β̂h − 0.5(β̂a
h + β̂b

h). However, note that a

4The command xtscc in STATA implements this type of covariance matrix estimation.
5In STATA, this type of boostrap can be implemented with the user supplied command boottest.
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recent paper by Hahn et al. (2024) shows that the split panel jackknife bias correction is generally

higher order inefficient and may significantly increase estimator variance in finite samples compared

to higher order efficient bias correction methods.

8. Conclusion

The error structure of local projections and the kind of hypotheses implicit in the way inference is

obtained and communicated requires some care. Residual serial correlation in local projections can

be dealt with and more recent developments show that it can be obtained rather easily using lag

augmentation and heteroscedasticity robust methods. Bounds for simultaneous inference are also

relatively easy to construct, though in most situations we expect that practitioners will simply report

formal hypothesis tests.

The significance bands introduced in this review are simple to construct and can be easily

displayed alongside the usual confidence bands. While confidence bands inform the reader about

the estimation uncertainty of each coefficient, significance bands inform the reader about the

significance of the impulse response itself.

Panel data settings present their own challenges and opportunities. The time series and cross-

sectional dimensions of the panel play a critical role in choosing the best inferential procedures.

Cluster robust inference generally offers an attractive approach, but cannot always be directly used.

Inference in panel data settings is an ever growing field and new developments are constantly

arriving to improve existing methods.

Applications and extensions of local projections continue to grow. In this review we are unable to

cover every single scenario. However, we hope to have provided the reader with general principles

that can then be tailored to each specific extension.
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Appendix

In this appendix we provide some background on the construction of significance bands proposed
in Section 6.

The LM Statistic
We consider the just identified instrumental variables estimator discussed in the paper under the
constraint that the null H0 : βh = 0 holds. The estimator β̂h solves the problem

argmin
βh

1
2

(
T

∑
t=1

zt (yt+h − stβh)

)2

.

We can set up a Lagrangian to analyze the constrained problem βh = 0 as

L (βh) =
1
2

(
T

∑
t=1

zt (yt+h − stβh)

)2

+ λβh.

The first order condition is

∂L (βh)

∂β
= −

T

∑
t=1

zt (yt+h − stβh) + λ = 0
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such that the Lagrange multiplier, using β = 0, is

λ̂ =
T

∑
t=1

ztyt+h.

The LM test now is based on the asymptotic χ2
1 statistic

T2
h =

(T − h) −1λ̂2

Var
(
T−1/2λ̂

) →d χ2
1 under H0.

Let ω̂ be an estimator of Var
(
n−1/2λ̂

)
. Then the test rejects βh = 0 if

T̂2
h =

(T − h) −1λ̂2

ω̂
> cχ2

1,α

where cχ2
1,α is the 1 − α quantile of the χ2

1 distribution. Note that

T̂2
h =

(T − h) −1
(

∑T
t=1 ztyt+h

)2

ω̂

=
(T − h)

(
β̂h
)2

ω̂/
(

1
T−h ∑T

1 zt st

)2

which shows that the test based on T̂2
h is numerically identical to the test implied by inverting the

confidence interval proposed below. The estimator ω̂ can be understood as the HAC estimator of

(T − h)−1
T

∑
t=1

ztũt+h = (T − h)−1
T

∑
t=1

zt (yt+h − stβh,0) = (T − h)−1
T

∑
t=1

ztyt+h

where (T − h)−1 ∑T
t=1 ztyt+h is the coefficient in an OLS regression of ztyt+h on a constant. In

other words the variance of β̂h is computed by imposing the null when obtaining the model
residual ũt+h = yt+h. The long run variance (spectrum at zero frequency) of ztũt+h = ztyt+h is
∑∞

j=−∞ E(zt yt+h zt−j yt+h−j) whether or not the null holds true in the DGP. The test statistic is evalu-
ated at the null and is based on an estimator for σ2 = ω̃

γ2
zs

where ω̃ = ∑∞
j=−∞ E(zt yt+h zt−j yt+h−j).

Bonferroni Inequality
The Bonferroni inequality in the context of our impulse response coefficients can be stated as

P

(
H−1⋃
h=0

{
β̂h /∈

[
ζα/2H

σ√
T − h

, ζ(1−α/2H)
σ√

T − h

]})

≤
H−1

∑
h=0

P
({

β̂h /∈
[

ζα/2H
σ√

T − h
, ζ(1−α/2H)

σ√
T − h

]})
≈

H−1

∑
h=0

α

H
= α.
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where the approximation in the last line refers to the fact that the individual confidence intervals
have coverage 1 − α/H in large samples. Based on calculations in the next section one obtains the
inequality (see also Dunn Equation 5), that the probability of all impulse response coefficients to be
inside the confidence sets is

P

(
H−1⋂
h=0

{
ζα/2H

σ√
T − h

< β̂h < ζ(1−α/2H)
σ√

T − h

})
≥ 1 − α

and where
{

a < β̂h < b
}

denotes the set of all samples where β̂h ∈ [a, b].

Joint Test of Non-Zero Impulse Responses

We define a test statistic that rejects H0 : β = 0 if at least one of the elements of β = [β0, ..., βH−1] is
outside the confidence interval. Formally, we say that we reject H0 if

Tn =
H−1

∑
h=0

1
{

β̂h /∈
[
ζα/2H ŝb

βh
, ζ1−α/2H ŝb

βh

]}
> 0

where 1 {.} is equal to 1 if the argument is true, and zero otherwise. In words, the expression counts
the number of β̂h that are not inside the confidence interval. This means that we reject the null if at
least one of the estimates is outside the confidence band around zero. The probability of rejecting
the null is

Pr (Tn > 0) = Pr

(
H−1⋃
h=0

{
β̂h /∈

[
ζα/2H ŝb

βh
, ζ1−α/2H ŝb

βh

]})

≤
H−1

∑
h=0

Pr
(

β̂h /∈
[
ζα/2H ŝb

βh
, ζ1−α/2H ŝb

βh

])
≈

H−1

∑
h=0

α

H
= α

and where the inequality is Bonferroni’s inequality.
Now we construct a confidence region in RH that contains the estimated impulse response β̂ in

repeated samples with at least probability 1 − α if the null H0 is true. Define the following sets

Ah =
{

b = (b0, ..., bH−1) ∈ RH |bh ∈
[
ζα/2H ŝb

βh
, ζ1−α/2H ŝb

βh

]}
where Ah is a strip in RH that goes through the interval

[
ζα/2H ŝb

βh
, ζ1−α/2H ŝb

βh

]
on axis h − 1. For

example, for H = 2, A1 is the set of all values b = (b0, b1) such that b1 ∈
[
ζα/4ŝb

βh
, ζ1−α/4ŝb

β1

]
and

b0∈ R is unconstrained. Then,

H−1⋂
h=0

Ah =
{

b ∈ RH |bh ∈
[
ζα/2H ŝb

βh
, ζ1−α/2H ŝb

βh

]
, h = 0, ..., H − 1

}
is a rectangle in the H-dimensional space such that each of the coordinates of b are in the one

dimensional confidence interval. By De Morgan’s law
(⋂H−1

h=0 Ah

)c
=
⋃H−1

h=0 Ac
h, where (.)c denotes
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the complement. We then have

Pr

(
β̂ ∈

(
H−1⋂
h=0

Ah

))
= 1 − Pr

(
β̂ ∈

(
H−1⋂
h=0

Ah

)c)

= 1 − Pr

(
H−1⋃
h=0

{
β̂h /∈

[
ζα/2H ŝb

βh
, ζ1−α/2H ŝb

βh

]})
(21)

≥ 1 −
H−1

∑
h=0

Pr
(

β̂h /∈
[
ζα/2H ŝb

βh
, ζ1−α/2H ŝb

βh

])
= 1 − α

where the first equality uses that
(⋂H−1

h=0 Ah

)
and

(⋂H−1
h=0 Ah

)c
are disjoint, and

(⋂H−1
h=0 Ah

)
∪(⋂H−1

h=0 Ah

)c
= RH. The second equality uses{

β̂ ∈
(

H−1⋂
h=0

Ah

)}
=

(
H−1⋂
h=0

{
β̂ ∈ Ah

})

since β̂ is in the hypercube
(⋂H−1

h=0 Ah

)
if all coordinates β̂h are in the segments defining the

hypercube. Here the {.} brackets mean all outcomes for which β̂ satisfies the condition. Since
β̂ ∈ Ah iff β̂h ∈

[
ζα/2H ŝb

βh
, ζ1−α/2H ŝb

βh

]
it follows that

{
β̂ ∈ Ah

}c
=
{

β̂h /∈
[
ζα/2H ŝb

βh
, ζ1−α/2H ŝb

βh

]}
Now apply de Morgan’s law to the RHS. Finally, the inequality in the display above is the Bonferroni
inequality.

Since we do not reject H0 if Tn = 0 and Tn = 0 iff β̂h ∈
[
ζα/2H ŝb

βh
, ζ1−α/2H ŝb

βh

]
for all h =

0, ..., H − 1 we obtain

Pr (T = 0) = Pr

(
H−1⋂
h=0

{
β̂h ∈

[
ζα/2H ŝb

βh
, ζ1−α/2H ŝb

βh

]})

= 1 − Pr

(
H−1⋃
h=0

{
β̂h /∈

[
ζα/2H ŝb

βh
, ζ1−α/2H ŝb

βh

]})
≥ 1 − α

where the second equality follows from the laws of total probability and De Morgan’s law and the
inequality follows from the bound in (21).
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