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The simplest tests of capital market efficiency are
tests of the fair game model: conditional expected returns
less the interest rate are equal to zero. * The fair game
model is thought to obtain only when markets are per-
fectly liguid. We show that this conjecture is false. In a
model of the housing market where heterogeneous agents
must search for partners in order to trade, excess returns
on housing wealth are fair games if, as is appropriate,
returns are defined to include shadow prices measuring
illiquidity (JEL classifications G12, D40, D83).

1 Introduction and Summary

Under simplifying assumptions, excess asset returns are
fair games: the conditional expected return on any asset
less the interest rate is zero. The fair-game model plays
a central role in settings where one is willing to assume
stationarity and to abstract away from the effects of risk
aversion on asset prices. For example, the market effi-
ciency tests reported in Fama [2] are, for the most part,
tests of the fair game model.

It is generally supposed that the fair game model de-
scribes returns only in markets that are perfectly liquid.
The basis for this presumption is that the simplest jus-
tification for the fair game model does in fact require
market liquidity. This justification consists of the obser-
vation that if there existed some asset with an expected
return that differed from the interest rate, then a single
(well-financed, risk-neutral, price-taking) investor could
generate an expected utility gain by borrowing and buy-
ing the mispriced asset, or the reverse. This investor, be-

1The views expressed herein are those of the authors and not
necessarily those of the Federal Reserve Bank of San Francisco or
the Federal Reserve System.

We are indebted to John McCall for helpful comments.

ing risk neutral, would continue to trade until fair game
asset prices were reestablished.

However, in the case of illiquid assets
assets for which the optimal sale or purchase strategy en-
tails time-consuming search—transaction costs generally
prevent the investor from bidding away the return differ-
entials. Therefore, the argument concludes, one would
not expect to end up with a fair game. It would seem
that autocorrelated returns to real estate, for example,
could coexist with a constant interest rate because the
illiquid nature of real estate prevents any investor from
conducting the trades that in liquid markets would re-
store fair games.

This argument is unsatisfactory. It confuses necessity
and sufficiency. It is correct that if markets are liquid,
then one can justify the fair game model by appealing to
the behavior of a single risk-neutral investor. It is also
correct that this argument fails if markets are illiquid.
It does not follow from these facts that perfect liquidity
is necessary for the fair game model (as, in fact, Fama
was careful to point out).

Asset returns in liquid markets behave as they do, not
because otherwise a single agent could conduct profitable
trades, but because otherwise the optimal trading rules
of agents collectively are mutually incompatible.

So far, it appears, we have no argument either way
about whether returns on illiquid assets are fair games.
The question has not been investigated, no doubt due to
the fact that we have little experience building models
of equilibrium valuation of illiquid assets. 2

We present a model of equilibrium valuation of illiquid
assets in this paper. For the present purpose, illiquidity
has three components. First, the asset in question is het-

defined here as

2Wheaton [10] and Williams [11] have models of real estate
illiquidity that are related to ours.



erogeneous. Heterogeneity by itself does not imply illig-
uidity: Ricardian land is heterogeneous, but not illiquid.
Second, asset quality can be determined only via costly
search, resulting in noncompetitive markets. Third, illig-
uidity implies an element of irreversibility: acquisition of
an illiquid asset involves a cost that cannot be recouped
completely if the asset is subsequently sold.?. The model
to be presented has all three features.

The term “liquidity” is often used with connotations
different from those listed in the preceding discussion or
incorporated in the model to be presented. For example,
illiquidity is often held to imply that assets can be sold
immediately only at fire sale prices, if at all. The model
to be presented (under minor modification) has the prop-
erty that assets can be sold immediately at (wholesale)
prices that are lower than the (retail) prices obtainable if
the assets are marketed. However, these are fair prices,
not fire sale prices. It would seem that the phenomenon
of fire sales can only occur when credit markets fail, a
specification that we do not consider (see Stein [8]).

In the market microstructure literature in finance the
term “liquidity” is used in a still different way. There
illiquidity is manifested in a bid-ask spread, which is
how the specialist protects himself when trading with
agents who may have superior information (Glosten and
Milgrom [3]).

As in the model to be presented, the analysis of illig-
uidity in the market microstructure literature is pred-
icated on asymmetric information. However, in the
market microstructure literature the asset in question
shares of stock—is homogeneous, and there is no element
of irreversibility.

In our model, agents consume two goods: housing ser-
vices and a background good. They are risk neutral in
both goods. Agents have an infinite horizon, and have
a common rate of time preference 5. Consumption of
the background good can be either positive or negative.
Agents’ endowments of the background good are zero, so
an agent’s consumption of the background good at any
date equals the negative of his net expenditure on hous-
ing at that date. Under this specification there is no
need to incorporate markets in financial claims on the
background good in the model: agents have no incen-
tive either to shift consumption over time or to transfer
risk among themselves. Including financial markets in
the model would be possible—in fact, easy—precisely
because doing so would not materially alter the equilib-
rium.

Agents can consume housing services only by buying
a house. They can own more than one house, but can

3The link between liquidity and flexibility is emphasized by
Jones and Ostroy [4]

consume housing services only from one house at a time.
An agent who lives in a house is said to have a “match”,
and the quantity of housing services provided per period,
€, 18 called the “fit”. An agent with a match does not
search for new housing; he consumes housing services
from his current home until the match fails, an event
that occurs with probability 1 — 7 at each date.

The assumption that agents must forego the oppor-
tunity to search upon buying a house is our (admittedly
ad hoc) way of capturing the element of irreversibility
that, on our definition, is inherent in the idea of illiquid-
ity. We choose this specification instead of other possible
specifications because in its absence the analysis would
be considerably more difficult.

The interpretation of the match failing is that the
agent now needs a house with different characteristics
location, size or amenities, for example. When the match
fails the house no longer furnishes any housing services.
Therefore the agent begins searching for a new house.
Agents without a match visit exactly one house that is
for sale per period. Having inspected the house, the
prospective buyer knows the fit. After comparing the fit
with the sale price, the buyer decides whether or not to
buy the house.

The fit is not observed by the seller, and cannot be
credibly communicated to him. The seller posts a take-
it-or-leave-it price for the house, with no subsequent bar-
gaining. If the prospective buyer buys the house his
consumption of the background goods decreases by the
purchase price of the house, and he consumes housing
services until the new match fails. At that time he offers
the house for sale and again begins a search for housing.
If he declines to buy the house, he consumes no hous-
ing services in that period and continues the search for
a house in the next period.

As soon as a match fails, the house in question be-
comes a financial asset to be disposed of optimally.
There is no rental market, so the agent will immediately
offer the house for sale, and will keep the house on the
market until it is sold. It is assumed that the number of
agents equals the number of houses, so each house that
is for sale is visited by exactly one prospective buyer per
period. It is possible for an owner to have no houses,
one house or several houses on the market, depending
on his luck at finding buyers and at maintaining his own
match.

The agent’s problem as a buyer consists in formulating
a decision rule that governs whether he buys the house
he inspected. As a seller he must decide how much to
charge for a house (or houses) that he is selling. These
rules, of course, apply only when the agent does not have
a match in the first case, and only when the agent has a



positive inventory of houses in the second case.

It turns out that linear utility has the agreeable impli-
cation that these problems are decoupled: the optimal
buy rule is independent of how many houses the agent
is selling, and the optimal sale price does not depend
on whether the agent has a match or on the number of
houses that he has for sale.

We seek a symmetric Nash equilibrium: an equilib-
rium in which each agent’s decision rules are best re-
sponses to the same decison rules when adopted by other
agents.

Note that market clearing is not involved in the notion
of equilibrium relevant for the analysis of illiquid asset
valuation. This implies that an argument frequently in-
volved in analyzing valuation of liquid assets — prices are
as they are because otherwise markets could not clear
is not available in analyzing valuation of illiquid assets.
If the seller overprices the house he is selling, prospective
buyers who at a lower price might have bought the house
will pass on it. Therefore the seller will wait too long be-
fore selling the house, on average. There is no sense in
which markets fail to clear here, but it remains true that
if assets have the wrong prices some or all market partic-
ipants are acting suboptimally in their responses to each
other, which is inconsistent with Nash equilibrium.

The optimal decision rules are easily characterized.
With regard to the buy rule, an agent can compute the
value of owning a house by capitalizing the expected
housing services the house provides. In this calculation
the agent makes appropriate allowance for the possibil-
ity that the match will fail, implying that the house will
then be offered for sale. Under the optimal buy rule
the agent buys the house under consideration only if the
estimated value exceeds the price by an amount which
equals the discounted value of the opportunity to con-
tinue to search for housing.

With regard to the sell rule, the seller weighs the ben-
efit of a high price—higher revenue if the house sells—
against a lower probability of the house selling. If the
house does not sell the seller must hold it without receiv-
ing revenue until the next period, which is costly because
of the time value of money.

The optimal price is high enough to afford an ade-
quate capital gain, but not so high as to reduce pro-
hibitively the probability of sale. A “motivated seller”,
in realtors’ parlance, could sell a house quickly by set-
ting a low sale price, but optimization entails setting a
higher price and waiting for a buyer with a good fit.

The model just described captures the essential fea-
tures of illiquidity as characterized above. It is described
more fully in the next section.

In Section 3 we go on to present a general discussion

of liquidity in the context of our model. Specifically, we
consider the suitability of several possible measures of
illiquidity. Strictly, this discussion is a digression from
the central concern of this paper, equilibrium return dis-
tributions on illiquid assets. The discussion of measures
of liquidity is presented because it is of interest in its
own right, and also because it brings out some general
aspects of valuation of illiquid assets.

One unambiguous measure of illiquidity is the aver-
age time to sale under optimal pricing. This measure is
relevant to both buyers and sellers.

Another measure is the difference between the price at
which houses sell and the value to its owner of a house for
sale prior to the arrival of the successful buyer. We refer
to the former as the retail price of a house and the latter
as its wholesale price. This terminology is appropriate
because agents would be willing to transfer ownership of
houses in arbitrary quantities at the wholesale price if
we had specified the model so as to permit them to do
S0.

It is easiest to suppress the wholesale market in hous-
ing, along with the markets for other liquid financial as-
sets, since our assumptions imply that in equilibrium
agents would be indifferent about trading on this mar-
ket if permitted to do so. Despite the fact that we sup-
press the wholesale market, it is convenient to refer to
the value of a house being offered for sale as its whole-
sale price. The wholesale price, of course, is predicated
on the presumption that the owner continues to offer it
for sale at the retail price, as is optimal.

The retail-wholesale price spread is a measure of illig-
uidity because it equals the price sacrifice a seller would
have to accept in order to achieve immediate sale (in
the version of the model permitting wholesale trading of
houses). This measure of illiquidity is relevant only for
sellers.

A third possible measure of illiquidity is the value
of the search option. If, as suggested in the introduc-
tion, illiquidity involves irreversible commitment, then
the cost of that commitment should be a measure of
illiquidity; here the cost of committing to the purchase
of a house is the value of the search option. We will
see in Section 3 that the value of the search option be-
haves differently from the other two measures of illiquid-
ity, raising questions about this interpretation.

In Section 4 we address the question of whether equi-
librium excess returns are fair games. There are three
distinct assets here: houses currently being offered for
sale, owner-occupied houses and the search option. The
equilibrium conditions directly imply that excess returns
on the former are fair games: the excess capital gain if
the house sells just offsets the foregone interest income



if it does not sell (each multiplied by the relevant prob-
ability).

With regard to the second, in our model the return on
an owner-occupied house consists of its housing services
plus its next-period value, adjusted for whatever loss in
value occurs if the match is broken next period, all di-
vided by the current value of the house. Excess returns
on owner-occupied housing are fair games.

Finally, we show that the excess return on the search
option is also a fair game.

2 The Model

As noted in the introduction, an agent without a match
evaluates one and only one house at cach date. The
fit € of any house for any prospective buyer is a ran-
dom variable distributed uniformly on [0,1], IID. This
distribution is common knowledge. Upon evaluating the
house the buyer learns the fit, but the seller does not.
There is no credible way for the buyer to communicate
the fit, nor can the seller induce or compel him to re-
veal it. Thus the seller must calculate the probability
that the house will sell from the distribution of € and
the equilibrium buy rule, whereas the buyer makes his
decision based on the realization of €. The seller will set
the sale price accordingly.

Since the seller does not know the fit, he must ask the
same price regardless of the fit. Therefore the prospec-
tive buyer who decides to buy will realize a consumer’s
surplus the magnitude of which depends on the fit, but
is always nonnegative.

If the agent buys the house, he receives housing ser-
vices at rate € beginning at the end of that period and
continuing until the match is broken. By convention the
housing services on a newly bought house, like those on a
house bought at some time in the past, occur at the end
of the period (so that housing is priced ex-housing ser-
vices, corresponding to the convention usually adopted
in finance that stocks and bonds are priced ex-dividend
and ex-coupon). If the buyer elects not to buy the house
he consumes no housing services, and will continue the
search next period.

At the end of the period agents who entered the pe-
riod with a match and those who bought a house dur-
ing the period draw random variables which determine
whether their matches continue into the next period or
are broken. If an agent’s match persists he continues to
consume housing services at the rate €; if the match is
broken the agent will go into the next period without a
fit, and will begin searching for a house.

Asnoted, we seek a symmetric Nash equilibrium: each
agent’s decision rules are a best response to other agents’

behavior when other agents act according to the same
decision rules. It is assumed that buyers and sellers are
anonymous; since they have no repeated interaction their
strategy sets consist of the decision rules at a single date.

For any agent the state at any date consists of three
variables: 1, € and h. Here 1 is a 0-1 variable specifying
whether the agent has a match (¢ = 1) or not (¢ = 0)
at the beginning of the period. As noted above, € is the
fit for an agent with a match (if ) = 0, € does not affect
any subsequent behavior). The variable A is the number
of unoccupied houses an agent owns, and therefore offers
for sale.

An agent who is without a match and who does not
own any houses still has positive wealth (defined as the
expected present value of future consumption). This
wealth equals the expected discounted value of future
consumer’s surpluses that occur whenever an agent buys
a house.

Call the capitalized value of this surplus s. At any
date the wealth of an agent equals

hq +yv(e) + (1 = )s, (1)

where s and ¢, the wholesale value of a house, are deter-
mined endogenously. Here v(e), the expected utility of
the housing services generated by a house for its owner-
occupant if the fit is €, is given by

v(e) = Be + Bro(e) + B(1 —7) (g + ). (2)

The house generates housing services € at the end of the
period, leading to the term fe. If the match persists,
which occurs with probability 7 I1D, the house is worth
v(€) again next period. If not, the value of the house to
its owner is its wholesale value ¢q. However, if the match
fails the owner also recovers the opportunity to search,
which contributes s to the current value of the house.
The optimal decision rule 4 for the buyer is:

buy if n > €

do not buy if n < €*, (3)

where 7 is the fit of the house the prospective buyer is
currently evaluating. Here €*, the reservation fit, satisfies

o(€) = p+ Bs. (4)

Eq. (4) states that the marginal buyer finds that the
value v(e*) of the house he is evaluating just equals the
price p asked by the seller plus the opportunity cost s of
giving up the option to search again next period.

4These decision rules are derived in the appendix. Decision
rules of the form (3) are frequently encounted in search models;
see, for example, Lippman and McCall [6].



A bar over a variable indicates that that variable is
determined by the behavior of another agent. Of course,
the adopted equilibrium concept implies that the value of
p chosen by the seller whose house the agent is evaluating
will equal the price p that the agent will charge for his
own house, or houses, that he is selling. Nevertheless,
the two variables must be distinguished in deriving the
equilibrium.

The value of the option to search s satisfies

s=p (v (F*f) p) B0 s,

Here i equals the probability that an agent searching
for a house will buy the house he is currently evaluating.
With probability g the agent will buy the house. Con-
ditional upon purchase, the expected fit is (e* 4 1)/2
halfway between the reservation fit €* and the maximal
fit of unity. Since v is linear, the capitalized expected
consumer surplus of a house conditional upon purchase
is therefore v((e* +1)/2) — p. With probability 1 — u the
buyer chooses not to buy, in which case he retains the
search option next period.

When the match is broken the agent immediately puts
his house up for sale. He will keep it on the market until
it sells whether or not he succeeds in finding a new house,
since either way the old house yields no housing services
to the seller. The retail and wholesale prices are related

by
q=pp+B(1—pg. (6)

The optimal decision rule for the seller is to set the retail
price p to maximize q:

(5)

(7)

Here p(y) is the probability that the house sells as a
function of its sale price y. This function, which turns
out to be linear, is taken as given by the seller. Tt is
derived from the buyer’s rule, eq. (3), where y is the
price the buyer faces.

The first-order condition for this maximization is

(=B Yp—pBg) +p=0,

p = argmax, (1(y)y + B(1 — p(y))q)-

(8)

where m — 871 equals the derivative of p with respect to
y (Appendix).
The model is closed by the equation

p=1-¢, (9)
which follows from the assumption that the fit is uni-
formly distributed on the interval [0, 1].

We have five equations—(4), (5), (6), (8) and (9)

the five unknowns ¢, p, p, €* and s. A solution to this

in

(@2

system of equations is a symmetric Nash equilibrium.
These equations, although nonlinear, are easily solved
numerically.

Note that in illiquid markets, the sale of a house is a
positive net-present-value event for both the buyer and
the seller, in contrast to the case in liquid markets. The
buyer has a wealth increase equal to the capitalized value
of the consumer surplus. Similarly, the seller receives a
capital gain upon sale: precisely because of the possi-
bility that the house will not sell immediately, its value
unsold is strictly less than the sale price. These features
of our model correspond to real-world housing markets,
where signing of a sale contract is good news for both
buyer and seller (and their agents).

The model has a minor loose end. We have not speci-
fied the number of agents. If there exists a finite number
of agents, then a single agent could conceivably own all
the houses in the economy at some date. In that case
there arises the question of what house he inspects if
his match fails. We ignore such events since they occur
with low probability if the number of agents and houses
is large. The problem can be avoided altogether if it
assumed that the number of agents is infinite, but that
would entail analytical complications. 2

3 Measures of Liquidity

The model just presented makes possible a general dis-
cussion of the meaning of liquidity and of several possi-
ble measures of liquidity. Optimal pricing implies that
a house sells with probability less than one each period.
This suggests that a natural measure of liquidity is the
probability p of sale during the current period or, equiva-
lently, the expected time to sale, (1—p)/p. This measure
is appropriate for both buyer and seller.

Another measure of liquidity, appropriate for the
seller, is the spread between the retail price of a house
p and its wholesale price ¢; this spread measures the
capital gain a seller experiences when a house sells. Be-
cause this variable always equals zero for liquid assets
(the value of a liquid asset to its owner just prior to sale
equals its value when sold), it may also be a suitable
measure of liquidity. One expects that the higher the
expected time to sale, or the higher the retail-wholesale
price spread, the greater the illiquidity.

5This difficulty occurs frequently in economics and finance. For
example, in discussing the arbitrage pricing theory it is custom-
ary to discuss diversified portfolios in a setting where only finite
portfolios, which cannot be completely diversified, are explicitly
modeled. This practice is acceptable because it is known that if
infinite portfolios are specified, then diversified portfolios can be
explicitly modeled, and omitting doing so does not distort the re-
sults. See Werner [9].



A third candidate measure of liquidity, appropriate
for the buyer, is s, the value of the search option. The
rationale for this measure is that, as noted in the in-
troduction, illiquidity involves an element of irreversible
cost when the asset is purchased. Here the irreversible
cost arises from the fact that an agent who buys a house
foregoes the opportunity to search again until the new
match is broken. The value of this foregone search op-
tion, s, appears to be a natural measure of liquidity, with
high values of s implying a high degree of illiquidity.

To investigate whether the interpretation of these
variables is correct, we conducted a comparative stat-
ics experiment designed to vary liquidity. In our model
houses are illiquid because buyers can evaluate only one
house per period. The easiest way to vary liquidity is
therefore to alter parameter values (the discount rate,
for example) so as to change the effective length of the
period. The expectation is that when the period is short,
so that buyers search frequently, the housing market be-
haves much like a liquid market: the average fit is high,
the average time to sale is short and the proposed mea-
sures indicate high liquidity.

We first computed a benchmark equilibrium based on
7 = 0.8 and 8 = .95 (corresponding to an average oc-
cupancy duration of four years and a real interest rate
of five per cent per year). Then we assumed that there
are n periods per year, for various values of n. For each
run we defined 8, = fY" and 1, = 7Y/, Also, we
assumed that housing services are distributed uniformly
on [0,1/n] instead of [0, 1], so as to preserve the scale of
housing prices. The endogenous variables p, ¢ and s do
not require rescaling, but the expected time to sale was
redefined to equal (1 — p)/np, so as to measure in years
rather than periods.

The accompanying graphs show the equilibrium val-
ues of p, ¢, p and (1 — p)/np as a function of n, for se-
lected values of n. For the most part the interpretation
is as expected. When n is high the probability of sale
during any period, p, is low since the prospective buyer
will buy the house only if the fit is very high. The buyer
is willing to pass on the house currently being evaluated
unless the fit is very high, since he does without housing
services for only a short interval before searching again.

Correspondingly, when n is high the seller charges a
high price for the house since he knows that if the cur-
rent prospective buyer does not buy, another prospective
buyer will be along shortly, and the cost of holding the
house vacant for a short time is low.

Even though the probability of sale during any period
is low when n is high, the expected time to sale is low
(since (1 —p)/p increases more slowly than n). Thus the
higher n, the lower the vacancy rate.

When n is high, both p and q are high, but the spread
between them is small (this is, of course, a direct con-
sequence of eq. (6) with 8 replaced by f,, since 3,
converges to unity as n rises). Thus the first two mea-
sures of liquidity proposed above imply that when n is
high, markets are liquid, as expected.

The behavior of s for different values of n is more
interesting. First, note that s rises with n. However,
the relevant measure of the value of search is surely s
expressed as a proportion of the value of housing (p or
q), and p and ¢ also rise with n, as just observed.

As it happens, s/q equals one-half regardless of the
value of n, so that measured liquidity does not depend
on n. To understand why s/q equals one-half, note that
the fact that egs. (5) and (6) have the same form implies

that N
s_w(€+1)/2)—p (10)
q p

Thus showing that s/q equals one-half is equivalent to
showing that the right-hand side of (10) equals one-half.
But the fact that under linear utility the expected con-
sumer surplus equals one-half the purchase price is well
known. 6

There are two possible interpretations of the fact that
s/q does not rise with n. The first is that s/q is not a
good measure of liquidity. However, rejecting s, how-
ever normalized, as a measure of liquidity raises ques-
tions about the characterization of liquidity offered in
the introduction. There we suggested that illiquidity in-
volves an element of irreversible cost; in our model s is
the obvious measure of this cost. Thus rejecting s as
a measure of illiquidity appears to imply rejecting the
association between illiquidity and irreversible cost.

The other interpretation is that the idea of liquidity
does not lend itself to a single unambiguous measure. It
is true that in economies with high n buyers without a
match will buy a house more quickly on average than in
economies with low n, suggesting that liquidity is higher
in the former case. However, it is also true that when
n is high the number of searches that a buyer foregoes
upon purchase of a house is higher. As observed above,
it turns out that the value of these foregone searches rises

6In a wide variety of models incorporating risk neutrality, the
expected surplus to the buyer of an optimally-priced commodity
equals one-half the price paid. For example, consider a single-date
model in which a seller owns an asset the value of which to a buyer
is uniformly distribution on [0, 1]. This is the static counterpart
of the dynamic model considered here. The seller knows that the
buyer will buy if the value exceeds p, which will occur with prob-
ability 1 — p for any p. Therefore the optimal price is that which
maximizes expected revenue p(1 — p), or one-half. But then the
expectation of the value of the object to the buyer conditional
on purchase is three-quarters, implying that the expected surplus
equals one-half the purchase price.



in proportional to the value of the house, suggesting that
liquidity does not change with n.

Along these lines one would accept the fact that dif-
ferent aspects of liquidity are appropriately measured
using different variables, and these variables cannot be
expected to behave in the same way in different settings.
One would give up the idea that a single comparative
statics experiment, such as changing the length of the pe-
riod, necessarily corresponds unambiguously to increas-
ing or decreasing liquidity. Rather, both the variable
used to measure liquidity and the experiment chosen to
vary liquidity will depend on what aspect of liquidity one
has in mind.

4 Are Returns Fair Games?

In this section the properties of the equilibrium distri-
butions of returns are analyzed. Here the (gross) return
on an asset has the usual definition as the value of its
payoff (dividend or service flow plus next-period asset
value) divided by current asset value.

In the model of this paper there are three sources of
wealth (recall eq. (1)). First, any agent, matched or
not, may own one or more houses that he no longer lives
in. All unoccupied houses are always offered for sale
at price p. Prior to sale they have value ¢ per house.
Second, a matched agent with fit € owns an asset with
value v(€). Third, an unmatched agent owns the search
option, which has value s. We consider the returns on
each asset in turn.

First, the return on a house offered for sale is

| p/Bq with probability p
"= 1 with probability 1 — pu

(11)

To see this, observe that if the house sells its payoff is p.
However, under our convention on notation the proceeds
of the sale are paid to the seller in the current period,
not the next period. The next-period value of the payoff
if the house sells is therefore 3~1p. If the house does not
sell, its next-period value is g. Since the current value of
the house is ¢, the return distribution is as shown in eq.
(11). The conditional expected return is given by

E(r) = pp/Bq+ (1= p). (12)
Using eq. (6), eq. (12) simplifies to
BE(r)=p"1 (13)

Thus the return equals investors’ time preference.
Second, the return on an owner-occupied house is

- { e/v(e) +1
(e+q-+5)/0(e)

with probability 7w
with probability 1 — 7
(14)

Eq. (14) is based on the fact that the value of an owner-
occupied house to its owner is v(€), not p or p+ s. The
next-period payoff on the house is e +wv(e) if the match is
not broken, and € 4 q + s if the match is broken. Taking
the expectation and using eq. (2), it follows that the
expected rate of return on an owner-occupied house is
also given by eq. (13).

Third, an agent without a match owns the search op-
tion, the current value of which is s. The return on
the search option depends on 7, the outcome of the
search (which is not known at the beginning of the pe-
riod). If n > €*, so that the agent buys the house he
is about to evaluate, the payoff consists of housing ser-
vices 1 plus the expected next-period value of the house,
mo(n) + (1 — m)(q + s) less the next-period value of the
purchase price, equal to f71p. If n < €* the agent does
not buy the house, so the payoff is just s. We have

n+mv(n)+ (1 —m)(qg+s)—Bp))s, n>¢e

T:{ 1, n <€

Using eq. (2), eq. (15) can be simplified to

T:{ (B =p)/s, mze g

1, n < €*

(15)

Let F be a partition of [0,1] consisting of the two
events [0,€*), [¢*,1]. Then the conditional expectation
of r is given by

B lF) - { (Bl +1)/2) —p)/s W pop
o 1 w.p. 1—p
(17)
using the facts that E(e|n > €*) = (¢* 4+ 1)/2 and that v
is linear. Taking the expectation of r and using eq. (2),
eq. (13) results.

The excess returns (r — $71) just characterized are
fair games: the expected excess returns conditional on
the values of any or all of an agent’s state variables are
ZeT0.

The argument just presented prepares the way for the
analysis of returns in a more general version of the model,
one in which there exist economy-wide shocks. Specifi-
cally, suppose that we modify the model so that housing
services € are replaced by € 4+ x, where x is the economy-
wide component of housing services. The current value
of x is common to, and known by, all agents, but changes
randomly over time. In equilibrium all the endogenous
variables depend on x; nevertheless, it turns out that the
conditional expected return on owner-occupied houses,
non-owner-occupied houses and the search option condi-
tional on 2 is equal to S71, just as here?.

)

"See Krainer [5], where a model with aggregate risk is solved



It is well known that for liquid assets universal
risk neutrality implies that conditional expected returns
equal investors’ rate of time preference. The result of this
paper is that exactly the same thing is true for illiquid
assets. Illiquidity affects asset prices, but it also affects
the distribution of the equilibrium service flow on houses
(since the equilibrium value of €* is endogenous) in such
a way that expected returns are unaffected.

A large quantity of empirical evidence (for example,
Case and Shiller [1], Meese and Wallace [7]) supports
the conclusion that returns on housing are positively au-
tocorrelated. However, in empirical work returns are
defined as price changes, whereas we have seen that the
appropriate definition implies not only that implicit rent
should be included in the payoff of housing, but also that
the capitalized consumer surplus and the value of the
search option should be included in the value of hous-
ing. All these variables are unobservable, and it is not
easy to think of proxies. Thus it will not be easy to test
directly the fair game proposition.

A more promising research strategy is to test the
model by determining its predictions for return measures
that one can measure, rather than by trying to construct
a proxy for the theoretically correct return measure. The
present version of the model is not well suited to this
task, since it predicts that there are no return changes,
if these are identified with price changes as in the em-
pirical literature. However, as noted above the model
can be modified to include aggregate shocks to housing
services. If this is done then the empirical association
between returns and the various liquidity measures can
be investigated. Preliminary results along these lines are
reported in Krainer [5].

5 Conclusion

The major conclusion of this paper is that excess returns
are a fair game in illiquid markets, just as in liquid mar-
kets.

This conclusion, of course, depends critically on the
assumption of risk neutrality. The present result sug-
gests a conjecture about economies that incorporate
both illiquidity and risk aversion. The conjecture is
that the general equation of consumption-based asset
pricing—that the expected excess return on any asset
is proportional to the covariance of its payoff with the
marginal utility of consumption —will apply even in the
presence of illiquidity, as long as asset prices and payoffs
are defined so as to reflect option values correctly.

explicitly assuming that z is a two-state Markov chain; the model
is used to analyze such problems as how the various measures of
liquidity depend on the aggregate state.

If this conjecture is correct, the implication is that in-
corporating illiquid assets in equilibrium models implies
a much less radical departure from established analytical
procedures than one might expect.

Appendix

We want to derive the policy functions associated with
symmetric Nash equilibrium. The buyer’s policy rule is

0 = argmax,(zv(n) + (1 — 2)(p + Bs)), (18)

where 7 is the buyer’s fit with the house he is evaluating.
Here z € {0, 1} is the buyer’s decision variable, and 0 is
the expected-utility-maximizing value of z. The seller’s
policy rule is to offer for sale all houses that he owns but
does not live in. The sale price is p, given by

p = argmax, (1(y)y + B(1 — p(y))q). (19)

The endogenous variables p, g, €, p and s are deter-
=4

mined endogenously by equations (4), (5), (6), (8) and
(9), reproduced for convenience below:

o) =5+ Bs, (20)
s=p <v <€* ;r 1) —'p) + B(1 — p)s, (21)
q=pp+pBQ1—pg, (22)

(m =B (p — Ba) + 1 =0, (23)
pn=1—¢" (24)

Justification for the proposed policy rules (18) and
(19) begins with the conjecture that the wealth function

Pv(e) + (1 —)s+ hq (25)

((1) above) is a value function in the dynamic program-
ming sense. Then it is necessary (1) to show that the
proposed policy rules implement the maximization in
the Bellman equation, and (2) to verify that the con-
jectured form of the value function satisfies the required
recursion.

The derivation to follow turns out to be more di-
gestible if the cases ¥ = 1 and 1) = 0 are handled sepa-
rately. Thus we write the conjectured form of the value
function as

J(e,h) = v(e) + hq if the agent has a match  (26)

J(0,h) = s+ hq if the agent has no match, (27)

where we substitute 0 for e if there is no match.



Consider first the case where there is a match. The
Bellman equation is

J(e, h) = max[hpu(y)y + Pe
Yy

+0mJ (e, (1 = p(y))h) (28)
+3(1 —m)J(0, (1 — p(y))h +1)].

The first line is the agent’s expected consumption from
sales of housing, hy(p)p, and of housing services, Be. The
second line is the probability 7 that the match persists
multiplied by the discounted expected value function in
that case. Here the second argument of J represents
the expected next-period housing portfolio as one minus
the expected rate of sale multiplied by the original port-
folio. The third line is the product of the probability
that the match fails and the discounted value function
in that case; note that the expected housing portfolio is
augmented by 1, reflecting the fact that the agent will
want to sell the house.

Now insert the value functions (26) and (27) into (28).
Collecting terms, there results

J(e,h) = m;LX[hu(y)y + B(1 = pu(y))hq

+Be + Bro(e) + B(1 — m)(q + s). (29)

The right-hand side of the first line equals hq, from (19)
and (22), and the second line equals v(e), from the defi-
nition

v(€) = Be + prv(e) + (1 —7)(q + s) (30)

of v. Therefore we have (26).
Now turn to the case where there is no match. The
Bellman equation is

J(0,h) = E, [lgfgx{hu(y)y + z(8n — D)

+B2{mJ(n, (1 = pu(y))h) + (1 = m)J (0, (1 = pu(y))h +(1)};
31
+A(1 = 2)J(0, (1 — pu(y))h)}]-

As before, the first term on the right-hand side of (31)
indicates that the agent allocates the proceeds of housing
sales to nonhousing consumption. If he chooses to buy
the house he is evaluating (z =1) he consumes in addi-
tion its housing services 77, but also decreases nonhousing
consumption by an amount equal to the purchase price
of the house.

The second line of (31) gives the expected next-period
value functions if the agent decides to buy the house.
Because of the possibility that the match just under-
taken may fail going into the next period, there are two

possibilities: J(n,1 — p(y)h) if the match persists and
J(0, (1 — p(y))h + 1) if it fails. The third line gives the
next-period expected value function if the agent decides
not to buy the house (z = 0).

Inserting expressions (26) and (27) for the next-period
value functions in the right-hand side of (31) and collect-
ing terms, we get

J(0,h) = Eg[max{hy(y)y + 2(n — p) + zfmv(n)

(1= ply)ha(eBr + 260 —m) + (1= 2)8)  (32)
+2B(1 —7)(q +s) + B(1 — 2)s}].
Observe that the second line above simplifies to G(1 —
1(y))hg, so we have
J(0,h) = Eyfmax{hy(y)y + B(1 — u(y))hq

+2(Bn—p)+zpmro(n)+20(1-m)(g+s)+4(1-2)s}]. (33)

Again, (19) and (22) may be replace
max, ((y)y + B(1 — (y))a) by ¢, which may be passed
out of the expectation. Therefore we have

used to

J(0,h) = hq + Ey[max{

2(Bn + pro(n) + B(1 —m)(q + 5)) (34)
—2p+ B(1 — z)s}].
From (30), the second line is recognized as zv(n), so (34)
becomes

J(0,h) = hq + En[mzax{z(v(n) —p)+ (1 —2)8s}]. (35)

= hq + Ey[max(zv(n) + (1 - 2)(p+ fs) —p] ~ (36)

after adding and subtracting p.
The policy rule (18) implements the maximization, so

(36) becomes
J(0,h) = hq + Ey[0v(n) + (1 = 0)(p+ Bs) —p]  (37)

= hg + Enl0(v(n) —p) + (1 - 0)5s]. (38)

The decision variable 6, now treated as a random vari-
able, takes on value 1 with probability p and value 0
with probability 1 — pu. Further, the expectation of n
conditional on # = 1is (¢* + 1)/2. Therefore we have

4+ 1
J(0,h) = hq + p (v (F ;

)—p>+ﬂﬂ—u% (39)

= hq + s, (40)
from (21).



The last step is to evaluate du/dy in the first-order

condition J
m
—(y—p =0
i (y = Ba) +p
for maximization of q. The seller knows that if he charges
price y, the buyer with fit € will make the purchase if

€ > €*(y), where €*(y) satisfies
Bef(y) + B(1 —7)(q +3)

(41)

v(e*(y)) = e =y+Bs. (42)
Eq. (42) implies
de*(y) 1
L =f["" - 4:
o ™ (43)
Finally, (24) implies that
du de*
w_ 14
i ay’ (44)
so there results p
L=, (45)

leading to (23).
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Figure 1

Prices as function of buyer arrival rate
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Figure 2
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